作者
Mireia Uribe‐Herranz,Silvia Beghi,Marco Ruella,Kalpana Parvathaneni,Silvano Salaris,Nektarios Kostopoulos,Subin S. George,Stefano Pierini,Elisavet Krimitza,Francesca Costabile,Guido Ghilardi,Kimberly V. Amelsberg,Yong Gu Lee,Raymone Pajarillo,Caroline Markmann,Bevin McGettigan-Croce,Divyansh Agarwal,Noelle V. Frey,Simon F. Lacey,John Scholler,Khatuna Gabunia,Gary D. Wu,Elise A. Chong,David L. Porter,Carl H. June,Stephen J. Schuster,Vijay Bhoj,Andrea Facciabene
摘要
Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types. Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types.