材料科学
结晶
超亲水性
海水淡化
盐(化学)
海水
蒸发器
蒸发
太阳能淡化
化学工程
纳米技术
润湿
有机化学
热交换器
复合材料
工程类
机械工程
气象学
化学
膜
生物化学
海洋学
物理
地质学
作者
Zhenxing Wang,Jie Gao,Jiajing Zhou,Jingwen Gong,Longwen Shang,Haobin Ye,Fang He,Shaoqin Peng,Zhixing Lin,Yuexiang Li,Frank Caruso
标识
DOI:10.1002/adma.202209015
摘要
Solar desalination is one of the most promising strategies to address the global freshwater shortage crisis. However, the residual salt accumulated on the top surface of solar evaporators severely reduces light absorption and steam evaporation efficiency, thus impeding the further industrialization of this technology. Herein, a metal-phenolic network (MPN)-engineered 3D evaporator composed of photothermal superhydrophilic/superhydrophobic sponges and side-twining hydrophilic threads for efficient desalination with directional salt crystallization and zero liquid discharge is reported. The MPN coatings afford the engineering of alternating photothermal superhydrophilic/superhydrophobic sponges with high heating efficiency and defined vapor escape channels, while the side-twining threads induce site-selective salt crystallization. The 3D evaporator exhibits a high and stable indoor desalination rate (≈2.3 kg m-2 h-1 ) of concentrated seawater (20 wt%) under simulated sun irradiation for over 21 days without the need for salt crystallization inhibitors. This direct desalination is also achieved in outdoor field operations with a production rate of clean water up to ≈1.82 kg m-2 h-1 from concentrated seawater (10 wt%). Together with the high affinity and multiple functions of MPNs, this work is expected to facilitate the rational design of solar desalination devices and boost the research translation of MPN materials in broader applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI