Automated lung tumor delineation on positron emission tomography/computed tomography via a hybrid regional network

卷积神经网络 正电子发射断层摄影术 特征(语言学) 计算机科学 分割 人工智能 断层摄影术 图像分割 PET-CT 模式识别(心理学) 计算机视觉 核医学 放射科 医学 语言学 哲学
作者
Yang Lei,Tonghe Wang,Jiwoong Jeong,James Janopaul‐Naylor,Aparna H. Kesarwala,Justin Roper,Sibo Tian,Jeffrey D. Bradley,Tian Liu,Kristin Higgins,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (1): 274-283 被引量:6
标识
DOI:10.1002/mp.16001
摘要

Abstract Background Multimodality positron emission tomography/computed tomography (PET/CT) imaging combines the anatomical information of CT with the functional information of PET. In the diagnosis and treatment of many cancers, such as non‐small cell lung cancer (NSCLC), PET/CT imaging allows more accurate delineation of tumor or involved lymph nodes for radiation planning. Purpose In this paper, we propose a hybrid regional network method of automatically segmenting lung tumors from PET/CT images. Methods The hybrid regional network architecture synthesizes the functional and anatomical information from the two image modalities, whereas the mask regional convolutional neural network (R‐CNN) and scoring fine‐tune the regional location and quality of the output segmentation. This model consists of five major subnetworks, that is, a dual feature representation network (DFRN), a regional proposal network (RPN), a specific tumor‐wise R‐CNN, a mask‐Net, and a score head. Given a PET/CT image as inputs, the DFRN extracts feature maps from the PET and CT images. Then, the RPN and R‐CNN work together to localize lung tumors and reduce the image size and feature map size by removing irrelevant regions. The mask‐Net is used to segment tumor within a volume‐of‐interest (VOI) with a score head evaluating the segmentation performed by the mask‐Net. Finally, the segmented tumor within the VOI was mapped back to the volumetric coordinate system based on the location information derived via the RPN and R‐CNN. We trained, validated, and tested the proposed neural network using 100 PET/CT images of patients with NSCLC. A fivefold cross‐validation study was performed. The segmentation was evaluated with two indicators: (1) multiple metrics, including the Dice similarity coefficient, Jacard, 95th percentile Hausdorff distance, mean surface distance (MSD), residual mean square distance, and center‐of‐mass distance; (2) Bland–Altman analysis and volumetric Pearson correlation analysis. Results In fivefold cross‐validation, this method achieved Dice and MSD of 0.84 ± 0.15 and 1.38 ± 2.2 mm, respectively. A new PET/CT can be segmented in 1 s by this model. External validation on The Cancer Imaging Archive dataset (63 PET/CT images) indicates that the proposed model has superior performance compared to other methods. Conclusion The proposed method shows great promise to automatically delineate NSCLC tumors on PET/CT images, thereby allowing for a more streamlined clinical workflow that is faster and reduces physician effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超爱蛋炒饭完成签到,获得积分10
刚刚
刚刚
曾经雨筠发布了新的文献求助10
1秒前
酷炫的电源完成签到 ,获得积分10
1秒前
可爱的函函应助长期素食采纳,获得10
1秒前
刘瑶发布了新的文献求助10
3秒前
叶叶叶叶发布了新的文献求助10
3秒前
3秒前
Jager.Z完成签到 ,获得积分10
3秒前
dmj发布了新的文献求助10
3秒前
YJH完成签到 ,获得积分10
4秒前
4秒前
June完成签到 ,获得积分10
5秒前
6秒前
wxnice发布了新的文献求助10
6秒前
7秒前
8秒前
哈哈哈哈完成签到,获得积分20
8秒前
文艺的幻露完成签到,获得积分20
8秒前
曾经雨筠完成签到,获得积分10
8秒前
米饭多加水完成签到 ,获得积分10
9秒前
9秒前
10秒前
手残症发布了新的文献求助10
11秒前
11秒前
cheryl发布了新的文献求助10
12秒前
pifu发布了新的文献求助10
12秒前
科目三应助刘瑶采纳,获得10
12秒前
12秒前
西子阳完成签到,获得积分10
13秒前
dmj完成签到,获得积分20
14秒前
沙漠水发布了新的文献求助10
14秒前
and999完成签到,获得积分10
14秒前
15秒前
16秒前
科研通AI2S应助HU采纳,获得10
17秒前
17秒前
Faker完成签到 ,获得积分10
17秒前
18秒前
赘婿应助pifu采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101245
求助须知:如何正确求助?哪些是违规求助? 2752689
关于积分的说明 7620005
捐赠科研通 2404773
什么是DOI,文献DOI怎么找? 1275998
科研通“疑难数据库(出版商)”最低求助积分说明 616673
版权声明 599058