亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated lung tumor delineation on positron emission tomography/computed tomography via a hybrid regional network

卷积神经网络 正电子发射断层摄影术 特征(语言学) 计算机科学 分割 人工智能 断层摄影术 图像分割 PET-CT 模式识别(心理学) 计算机视觉 核医学 放射科 医学 语言学 哲学
作者
Yang Lei,Tonghe Wang,Jiwoong Jeong,James Janopaul‐Naylor,Aparna H. Kesarwala,Justin Roper,Sibo Tian,Jeffrey D. Bradley,Tian Liu,Kristin Higgins,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (1): 274-283 被引量:6
标识
DOI:10.1002/mp.16001
摘要

Abstract Background Multimodality positron emission tomography/computed tomography (PET/CT) imaging combines the anatomical information of CT with the functional information of PET. In the diagnosis and treatment of many cancers, such as non‐small cell lung cancer (NSCLC), PET/CT imaging allows more accurate delineation of tumor or involved lymph nodes for radiation planning. Purpose In this paper, we propose a hybrid regional network method of automatically segmenting lung tumors from PET/CT images. Methods The hybrid regional network architecture synthesizes the functional and anatomical information from the two image modalities, whereas the mask regional convolutional neural network (R‐CNN) and scoring fine‐tune the regional location and quality of the output segmentation. This model consists of five major subnetworks, that is, a dual feature representation network (DFRN), a regional proposal network (RPN), a specific tumor‐wise R‐CNN, a mask‐Net, and a score head. Given a PET/CT image as inputs, the DFRN extracts feature maps from the PET and CT images. Then, the RPN and R‐CNN work together to localize lung tumors and reduce the image size and feature map size by removing irrelevant regions. The mask‐Net is used to segment tumor within a volume‐of‐interest (VOI) with a score head evaluating the segmentation performed by the mask‐Net. Finally, the segmented tumor within the VOI was mapped back to the volumetric coordinate system based on the location information derived via the RPN and R‐CNN. We trained, validated, and tested the proposed neural network using 100 PET/CT images of patients with NSCLC. A fivefold cross‐validation study was performed. The segmentation was evaluated with two indicators: (1) multiple metrics, including the Dice similarity coefficient, Jacard, 95th percentile Hausdorff distance, mean surface distance (MSD), residual mean square distance, and center‐of‐mass distance; (2) Bland–Altman analysis and volumetric Pearson correlation analysis. Results In fivefold cross‐validation, this method achieved Dice and MSD of 0.84 ± 0.15 and 1.38 ± 2.2 mm, respectively. A new PET/CT can be segmented in 1 s by this model. External validation on The Cancer Imaging Archive dataset (63 PET/CT images) indicates that the proposed model has superior performance compared to other methods. Conclusion The proposed method shows great promise to automatically delineate NSCLC tumors on PET/CT images, thereby allowing for a more streamlined clinical workflow that is faster and reduces physician effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
8秒前
11秒前
热情的安彤完成签到,获得积分20
21秒前
阿治完成签到 ,获得积分10
24秒前
31秒前
34秒前
酷波er应助leonzhou采纳,获得10
34秒前
开霁完成签到,获得积分10
38秒前
su发布了新的文献求助10
39秒前
研友_VZG7GZ应助123采纳,获得10
41秒前
47秒前
51秒前
义气的元柏完成签到 ,获得积分10
53秒前
猫先生发布了新的文献求助10
54秒前
cris完成签到 ,获得积分10
56秒前
58秒前
cris关注了科研通微信公众号
59秒前
su完成签到,获得积分10
59秒前
Tim完成签到 ,获得积分10
1分钟前
猫先生完成签到,获得积分10
1分钟前
1分钟前
zzcc发布了新的文献求助10
1分钟前
程风破浪发布了新的文献求助10
1分钟前
是我不得开心妍完成签到 ,获得积分10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
尼古丁的味道完成签到 ,获得积分10
1分钟前
程风破浪完成签到,获得积分10
1分钟前
zzcc完成签到,获得积分10
1分钟前
科研通AI2S应助谦让冰真采纳,获得10
1分钟前
stay完成签到,获得积分20
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
stay发布了新的文献求助10
1分钟前
柳行天完成签到 ,获得积分10
1分钟前
高山七石发布了新的文献求助10
1分钟前
minya发布了新的文献求助30
1分钟前
希望天下0贩的0应助biubiu26采纳,获得30
1分钟前
路边完成签到 ,获得积分10
2分钟前
bkagyin应助热忱采纳,获得10
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162265
求助须知:如何正确求助?哪些是违规求助? 2813284
关于积分的说明 7899578
捐赠科研通 2472567
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142