Cuproptosis-related long non-coding RNAs model that effectively predicts prognosis in hepatocellular carcinoma

医学 肝细胞癌 比例危险模型 长非编码RNA 危险系数 生存分析 肿瘤科 内科学 生物信息学 置信区间 核糖核酸 遗传学 基因 生物
作者
Enmin Huang,Ning Ma,Tao Ma,Junyi Zhou,Weisheng Yang,Chuangxiong Liu,Zehui Hou,Shuang Chen,Zhen Zong,Bing Zeng,Yingru Li,Taicheng Zhou
出处
期刊:World Journal of Gastrointestinal Oncology [Baishideng Publishing Group Co (World Journal of Gastrointestinal Oncology)]
卷期号:14 (10): 1981-2003 被引量:8
标识
DOI:10.4251/wjgo.v14.i10.1981
摘要

Cuproptosis has recently been considered a novel form of programmed cell death. To date, long-chain non-coding RNAs (lncRNAs) crucial to the regulation of this process remain unelucidated.To identify lncRNAs linked to cuproptosis in order to estimate patients' prognoses for hepatocellular carcinoma (HCC).Using RNA sequence data from The Cancer Genome Atlas Live Hepatocellular Carcinoma (TCGA-LIHC), a co-expression network of cuproptosis-related genes and lncRNAs was constructed. For HCC prognosis, we developed a cuproptosis-related lncRNA signature (CupRLSig) using univariate Cox, lasso, and multivariate Cox regression analyses. Kaplan-Meier analysis was used to compare overall survival among high- and low-risk groups stratified by median CupRLSig risk score. Furthermore, comparisons of functional annotation, immune infiltration, somatic mutation, tumor mutation burden (TMB), and pharmacologic options were made between high- and low-risk groups.Three hundred and forty-three patients with complete follow-up data were recruited in the analysis. Pearson correlation analysis identified 157 cuproptosis-related lncRNAs related to 14 cuproptosis genes. Next, we divided the TCGA-LIHC sample into a training set and a validation set. In univariate Cox regression analysis, 27 LncRNAs with prognostic value were identified in the training set. After lasso regression, the multivariate Cox regression model determined the identified risk equation as follows: Risk score = (0.2659 × PICSAR expression) + (0.4374 × FOXD2-AS1 expression) + (-0.3467 × AP001065.1 expression). The CupRLSig high-risk group was associated with poor overall survival (hazard ratio = 1.162, 95%CI = 1.063-1.270; P < 0.001) after the patients were divided into two groups depending upon their median risk score. Model accuracy was further supported by receiver operating characteristic and principal component analysis as well as the validation set. The area under the curve of 0.741 was found to be a better predictor of HCC prognosis as compared to other clinicopathological variables. Mutation analysis revealed that high-risk combinations with high TMB carried worse prognoses (median survival of 30 mo vs 102 mo of low-risk combinations with low TMB group). The low-risk group had more activated natural killer cells (NK cells, P = 0.032 by Wilcoxon rank sum test) and fewer regulatory T cells (Tregs, P = 0.021) infiltration than the high-risk group. This finding could explain why the low-risk group has a better prognosis. Interestingly, when checkpoint gene expression (CD276, CTLA-4, and PDCD-1) and tumor immune dysfunction and rejection (TIDE) scores are considered, high-risk patients may respond better to immunotherapy. Finally, most drugs commonly used in preclinical and clinical systemic therapy for HCC, such as 5-fluorouracil, gemcitabine, paclitaxel, imatinib, sunitinib, rapamycin, and XL-184 (cabozantinib), were found to be more efficacious in the low-risk group; erlotinib, an exception, was more efficacious in the high-risk group.The lncRNA signature, CupRLSig, constructed in this study is valuable in prognostic estimation of HCC. Importantly, CupRLSig also predicts the level of immune infiltration and potential efficacy of tumor immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栖遇完成签到 ,获得积分10
刚刚
1秒前
科研小白发布了新的文献求助10
1秒前
1秒前
hhhhhh完成签到 ,获得积分10
2秒前
XM关闭了XM文献求助
2秒前
丘比特应助韋晴采纳,获得10
5秒前
5秒前
玖依完成签到,获得积分10
5秒前
ccy发布了新的文献求助10
6秒前
klyang应助皮皮采纳,获得80
6秒前
Tiger发布了新的文献求助10
8秒前
hyacinth11111完成签到 ,获得积分10
8秒前
小星星发布了新的文献求助10
8秒前
8秒前
斯文败类应助李明采纳,获得10
10秒前
10秒前
尹小末完成签到,获得积分10
11秒前
12秒前
浮游应助robin采纳,获得10
13秒前
无花果应助ZJH采纳,获得10
13秒前
liao完成签到 ,获得积分10
14秒前
科研通AI5应助dz采纳,获得10
16秒前
AAAaa发布了新的文献求助10
16秒前
13728891737完成签到,获得积分10
16秒前
16秒前
时尚的芮完成签到 ,获得积分10
17秒前
17秒前
shihuima发布了新的文献求助10
19秒前
20秒前
小星星完成签到,获得积分10
20秒前
鱼叮叮完成签到,获得积分10
21秒前
VV发布了新的文献求助50
21秒前
21秒前
23秒前
23秒前
25秒前
25秒前
dz完成签到,获得积分10
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181974
求助须知:如何正确求助?哪些是违规求助? 4368782
关于积分的说明 13604227
捐赠科研通 4220207
什么是DOI,文献DOI怎么找? 2314547
邀请新用户注册赠送积分活动 1313259
关于科研通互助平台的介绍 1261945