Cuproptosis-related long non-coding RNAs model that effectively predicts prognosis in hepatocellular carcinoma

医学 肝细胞癌 比例危险模型 长非编码RNA 危险系数 生存分析 肿瘤科 内科学 生物信息学 置信区间 核糖核酸 遗传学 基因 生物
作者
Enmin Huang,Ning Ma,Tao Ma,Junyi Zhou,Weisheng Yang,Chuangxiong Liu,Zehui Hou,Shuang Chen,Zhen Zong,Bing Zeng,Yingru Li,Taicheng Zhou
出处
期刊:World Journal of Gastrointestinal Oncology [Baishideng Publishing Group Co (World Journal of Gastrointestinal Oncology)]
卷期号:14 (10): 1981-2003 被引量:8
标识
DOI:10.4251/wjgo.v14.i10.1981
摘要

Cuproptosis has recently been considered a novel form of programmed cell death. To date, long-chain non-coding RNAs (lncRNAs) crucial to the regulation of this process remain unelucidated.To identify lncRNAs linked to cuproptosis in order to estimate patients' prognoses for hepatocellular carcinoma (HCC).Using RNA sequence data from The Cancer Genome Atlas Live Hepatocellular Carcinoma (TCGA-LIHC), a co-expression network of cuproptosis-related genes and lncRNAs was constructed. For HCC prognosis, we developed a cuproptosis-related lncRNA signature (CupRLSig) using univariate Cox, lasso, and multivariate Cox regression analyses. Kaplan-Meier analysis was used to compare overall survival among high- and low-risk groups stratified by median CupRLSig risk score. Furthermore, comparisons of functional annotation, immune infiltration, somatic mutation, tumor mutation burden (TMB), and pharmacologic options were made between high- and low-risk groups.Three hundred and forty-three patients with complete follow-up data were recruited in the analysis. Pearson correlation analysis identified 157 cuproptosis-related lncRNAs related to 14 cuproptosis genes. Next, we divided the TCGA-LIHC sample into a training set and a validation set. In univariate Cox regression analysis, 27 LncRNAs with prognostic value were identified in the training set. After lasso regression, the multivariate Cox regression model determined the identified risk equation as follows: Risk score = (0.2659 × PICSAR expression) + (0.4374 × FOXD2-AS1 expression) + (-0.3467 × AP001065.1 expression). The CupRLSig high-risk group was associated with poor overall survival (hazard ratio = 1.162, 95%CI = 1.063-1.270; P < 0.001) after the patients were divided into two groups depending upon their median risk score. Model accuracy was further supported by receiver operating characteristic and principal component analysis as well as the validation set. The area under the curve of 0.741 was found to be a better predictor of HCC prognosis as compared to other clinicopathological variables. Mutation analysis revealed that high-risk combinations with high TMB carried worse prognoses (median survival of 30 mo vs 102 mo of low-risk combinations with low TMB group). The low-risk group had more activated natural killer cells (NK cells, P = 0.032 by Wilcoxon rank sum test) and fewer regulatory T cells (Tregs, P = 0.021) infiltration than the high-risk group. This finding could explain why the low-risk group has a better prognosis. Interestingly, when checkpoint gene expression (CD276, CTLA-4, and PDCD-1) and tumor immune dysfunction and rejection (TIDE) scores are considered, high-risk patients may respond better to immunotherapy. Finally, most drugs commonly used in preclinical and clinical systemic therapy for HCC, such as 5-fluorouracil, gemcitabine, paclitaxel, imatinib, sunitinib, rapamycin, and XL-184 (cabozantinib), were found to be more efficacious in the low-risk group; erlotinib, an exception, was more efficacious in the high-risk group.The lncRNA signature, CupRLSig, constructed in this study is valuable in prognostic estimation of HCC. Importantly, CupRLSig also predicts the level of immune infiltration and potential efficacy of tumor immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ugly_20201208完成签到,获得积分10
刚刚
大意的凝云完成签到,获得积分10
1秒前
HH完成签到,获得积分10
2秒前
3秒前
5秒前
珈蓝完成签到,获得积分10
5秒前
嘟嘟请让一让完成签到,获得积分10
6秒前
莫x莫完成签到 ,获得积分10
7秒前
bubble完成签到,获得积分10
8秒前
8秒前
万能图书馆应助sl采纳,获得10
8秒前
河丫应助sl采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
科研人发布了新的文献求助10
9秒前
9秒前
魏莱关注了科研通微信公众号
10秒前
dd发布了新的文献求助10
11秒前
yifan92完成签到,获得积分10
12秒前
13秒前
灵巧的孤容完成签到,获得积分10
14秒前
袁翰将军发布了新的文献求助10
14秒前
a雪橙完成签到 ,获得积分10
16秒前
超帅的碱完成签到,获得积分10
16秒前
17秒前
陈大海完成签到,获得积分20
17秒前
LaTeXer给积极行天的求助进行了留言
17秒前
白斯特完成签到,获得积分10
18秒前
科研混子完成签到,获得积分10
18秒前
听雨完成签到 ,获得积分10
18秒前
jianglili完成签到 ,获得积分10
18秒前
思源应助王云骢采纳,获得10
19秒前
等待的航空完成签到 ,获得积分10
20秒前
顾矜应助乔安采纳,获得10
20秒前
雪ノ下詩乃完成签到,获得积分10
21秒前
神外之城发布了新的文献求助80
21秒前
科研人完成签到,获得积分10
23秒前
莫友安完成签到 ,获得积分10
23秒前
大个应助迅速曼冬采纳,获得10
24秒前
热心市民小红花应助阿湫采纳,获得10
25秒前
快乐战神没烦恼完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048