电解质
材料科学
化学工程
锂(药物)
纳米技术
电极
化学
物理化学
医学
工程类
内分泌学
作者
Qidi Wang,Chenglong Zhao,Zhenpeng Yao,Jianlin Wang,Fangting Wu,Sai Govind Hari Kumar,Swapna Ganapathy,Stephen Eustace,Xuedong Bai,Baohua Li,Jun Lü,Marnix Wagemaker
标识
DOI:10.1002/adma.202210677
摘要
Developing liquid electrolytes with higher kinetics and enhanced interphase stability is one of the key challenges for lithium batteries. However, the poor solubility of lithium salts in solvents sets constraints that compromises the electrolyte properties. Here, it is shown that introducing multiple salts to form a high-entropy solution, alters the solvation structure, which can be used to raise the solubility of specific salts and stabilize electrode-electrolyte interphases. The prepared high-entropy electrolytes significantly enhance the cycling and rate performance of lithium batteries. For lithium-metal anodes the reversibility exceeds 99%, which extends the cycle life of batteries even under aggressive cycling conditions. For commercial batteries, combining a graphite anode with a LiNi0.8 Co0.1 Mn0.1 O2 cathode, more than 1000 charge-discharge cycles are achieved while maintaining a capacity retention of more than 90%. These performance improvements with respect to regular electrolytes are rationalized by the unique features of the solvation structure in high-entropy electrolytes. The weaker solvation interaction induced by the higher disorder results in improved lithium-ion kinetics, and the altered solvation composition leads to stabilized interphases. Finally, the high-entropy, induced by the presence of multiple salts, enables a decrease in melting temperature of the electrolytes and thus enables lower battery operation temperatures without changing the solvents.
科研通智能强力驱动
Strongly Powered by AbleSci AI