材料科学
聚苯乙烯
复合材料
聚四氟乙烯
复合数
成核
化学工程
高分子化学
聚合物
有机化学
化学
工程类
作者
Zhuolun Li,Xiangdong Wang,Yaqiao Wang,Shihong Chen
标识
DOI:10.1177/0021955x231154619
摘要
A method using in-situ fibrillated polytetrafluoroethylene (PTFE) and octamethylenedicarboxylicdibenzoylhydrazide (TMC-300) supramolecular nucleator was presented to prepare low density polystyrene foams. This study used a torque rheometer in the molten compound preparation of PS/fibrillated-PTFE/TMC-300 composites. Scanning electron microscopy showed in-situ fibrillated polytetrafluoroethylene in Polystyrene melt and a nanofiber network with high aspect ratio. The formation of nanometer-sized fiber networks improved the melt viscoelasticity of matrices which promoted cell nucleation. As the results demonstrated, low-density foams with 11 μm average cell size were obtained using Polystyrene. The self-assembly nucleating agent TMC-300 was then introduced to the composite materials. TMC-300 and polytetrafluoroethylene as a composite cell nucleating agent were used in Polystyrene foams. Meanwhile, their nucleating efficiency was investigated. TMC-300 completed self-assembly in Polystyrene and served as composite nucleating agent in combination with polytetrafluoroethylene. Compared with the sample PS/PTFE-0.5, the average cell size of the sample PS/PTFE-0.5/TMC-2 had a reduction rate of 28.16% from 12.18 μm to 8.75 μm. The cell density increased by an order of magnitude. The composite nucleating agent was successful in controlling Polystyrene foam cell morphology, thus leading to the preparation of low-density Polystyrene microporous foams.
科研通智能强力驱动
Strongly Powered by AbleSci AI