光催化
异质结
制氢
半导体
载流子
材料科学
电子
光化学
光催化分解水
离子
分解水
光电子学
纳米技术
化学
氢
催化作用
物理
有机化学
量子力学
作者
Huabin Chen,Yujin Xing,Shicheng Liu,Yujie Liang,Junli Fu,Lijuan Wang,Wenzhong Wang
标识
DOI:10.1016/j.cej.2023.142038
摘要
Understanding the charge flow direction within semiconductor heterojunction is of crucial importance for designing and constructing next generation photocatalysts for fundamental perspective as well as efficient production of fuels such as hydrogen and hydrogen peroxide (H2O2). Here, two-dimensional (2D)/2D g-C3N4/In2S3 heterostructures are explored for photocatalytic H2O2 production in organic electron donor-free condition for the first time. The substantially augmented photocatalytic performance is unveiled by charge flow tracking realized through in situ reduction of Au ions by electron into Au and oxidation of Pb ions by hole into PbO2, revealing that photoinduced electrons of g-C3N4 move to In2S3 and holes remain in g-C3N4, prompting effective separation of charges. The experiments of radical trapping confirm that the photoexcited electrons accumulated on the conduction band of In2S3 in g-C3N4/In2S3 heterostructures generate H2O2 through a two-step one-electron reduction reaction of O2. This work not only identifies In2S3 as a new promising material for the photocatalytic H2O2 production but also provides a new approach for rational design of heterojunction photocatalyst via tracking charge flow direction to boost H2O2 production.
科研通智能强力驱动
Strongly Powered by AbleSci AI