A one-step soft-template hydrothermal preparation and piezoelectric catalytic activity of flowers-like Co-doped MoS2 microspheres

热液循环 催化作用 压电 材料科学 兴奋剂 水热合成 水溶液 化学工程 纳米技术 化学 复合材料 光电子学 有机化学 工程类
作者
Minghu Shen,Binghua Yao,Wen Zhang,Yinglong Chen,Yanping Ha
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:945: 169328-169328 被引量:13
标识
DOI:10.1016/j.jallcom.2023.169328
摘要

Piezoelectric catalysis is a promising environmental remediation technology developed by using piezoelectric materials to absorb mechanical energy (such as ultrasonic vibration or flow fluctuation) that widely exists in the environment. In this study, a new strategy for degradation of pollutants in water by piezoelectric catalysis was proposed, and a series of Co-doped MoS2 microspheres were prepared by one-step soft template hydrothermal method. The results showed that the particle size of these microspheres was around 2–4 µm and the flower-like structure was formed by the self-assembly intercalation of nanosheets. The Co-doped MoS2 (CMS-T-15) exhibited the best strain-induced effect and piezocatalytic activity for TC degradation (84.3% within 600 s), which was about 1.5 times higher than that of pure MoS2 (MS-T). The superior performance was attributed to the Co doping affects the electronic structure of the MoS2 crystals, which caused the binding energies of Mo 3d5/2 and Mo 3d3/2 in CMS-T-15 sample slight shifts towards higher binding energy values (229.6 eV and 232,8 eV). In addition, the ultrathin flower-like structure of Co-doped MoS2 provided abundant catalytic active edge sites and increased the surface charge density, promoting the generation of more superoxide radicals (‧O2-) and hydroxyl radicals (‧OH) to degrade TC pollutants. This work provides new insights into changing the morphology of MoS2 to develop high performance, low-cost piezoelectric catalysts that address water pollution by harnessing sustainable mechanical energy in the aqueous environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
WZ0904发布了新的文献求助10
4秒前
狂野静曼完成签到 ,获得积分10
5秒前
武映易完成签到 ,获得积分10
7秒前
zzz发布了新的文献求助10
8秒前
9秒前
大蒜味酸奶钊完成签到 ,获得积分10
9秒前
鱼宇纸完成签到 ,获得积分10
9秒前
LEE完成签到,获得积分20
9秒前
9秒前
Ava应助无限的绿真采纳,获得10
11秒前
小马甲应助xiongdi521采纳,获得10
11秒前
科研通AI5应助陶醉觅夏采纳,获得200
14秒前
憨鬼憨切发布了新的文献求助10
14秒前
14秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
16秒前
17秒前
18秒前
hh应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
Eva完成签到,获得积分10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
清爽老九应助科研通管家采纳,获得20
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
greenPASS666发布了新的文献求助10
19秒前
涂欣桐应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
secbox完成签到,获得积分10
20秒前
刘哈哈发布了新的文献求助30
20秒前
xyzdmmm完成签到,获得积分10
21秒前
21秒前
欢呼冰岚发布了新的文献求助30
22秒前
xiongdi521发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849