Multi-radar data fusion for maritime moving target detection based on three-dimensional sliding window

滑动窗口协议 计算机科学 恒虚警率 雷达 假警报 合成孔径雷达 计算机视觉 人工智能 低截获概率雷达 遥感 实时计算 窗口(计算) 双基地雷达 雷达成像 电信 地质学 操作系统
作者
He Wen,Yu Li,Chongdi Duan,Jun Zhang,Ning Li,Tao Wu
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (2): 646-665 被引量:4
标识
DOI:10.1080/01431161.2023.2168137
摘要

With the continuous improvement of radar resolution, distributed characteristics are presented with regard to maritime moving targets, which occupy multi-resolution cells in Synthetic Aperture Radar (SAR) image domain. However, the current constant false alarm rate (CFAR) detection algorithms rarely consider the impact of distributed characteristics on target detection performance, and thus the corresponding performance evaluation methods could not be applicable to this issue. In this paper, a multi-station fusion detection method for maritime moving target (MMT) is presented based on three-dimensional (3D) sliding window. Firstly, the multi-station echoes in Cartesian-Doppler frequency rate (DFR) domain are obtained under the simple-transmitting and multiple-receiving operation configuration, and the 3D sliding window is designed to achieve the optimal matching for a specified target with any moving direction in terms of its prior information, i.e. Radar Cross Section (RCS), radar resolution and target size. Then, the target cells within the sliding window are directly processed by means of the M/N criterion, and thus to avoid target detection performance loss caused by the artificial construction of extended detection statistics. Finally, a novel quantitative evaluation method in regards to a high-resolution radar is designed by mining the relationship between the target detection performance and the occupied cell number, which could greatly improve detection probability of distributed targets on the premise of a constant false alarm rate. The proposed algorithm does not need to design complex extended detection statistics, which provides a feasible way for robust detection and performance evaluation for a high-resolution radar. Simulation results verify the effectiveness of this research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑的乌完成签到,获得积分10
2秒前
大个应助Elio采纳,获得10
2秒前
fanyi发布了新的文献求助10
2秒前
云青完成签到,获得积分20
4秒前
wayhome发布了新的文献求助10
4秒前
5秒前
8秒前
王琳完成签到,获得积分10
10秒前
1033sry完成签到,获得积分10
11秒前
Killua发布了新的文献求助10
11秒前
12秒前
bkagyin应助阮楷瑞采纳,获得10
13秒前
vv发布了新的文献求助10
14秒前
16秒前
17秒前
leid完成签到 ,获得积分10
17秒前
蓝冰完成签到,获得积分10
18秒前
SciGPT应助杨凡华采纳,获得10
20秒前
千跃完成签到 ,获得积分20
20秒前
20秒前
Akim应助于归采纳,获得10
21秒前
Killua完成签到,获得积分10
22秒前
23秒前
阮楷瑞发布了新的文献求助10
24秒前
ttttttttttt发布了新的文献求助10
24秒前
25秒前
zzz发布了新的文献求助10
27秒前
隐形曼青应助陈曦采纳,获得10
27秒前
28秒前
28秒前
乐观啤酒应助xumeo采纳,获得10
30秒前
哈哈发布了新的文献求助30
31秒前
zhzike发布了新的文献求助50
31秒前
32秒前
希望天下0贩的0应助wayhome采纳,获得10
32秒前
顾矜应助wwwyyy采纳,获得10
33秒前
咖啡八块八完成签到 ,获得积分10
33秒前
Terc发布了新的文献求助10
33秒前
webryy发布了新的文献求助10
33秒前
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738248
求助须知:如何正确求助?哪些是违规求助? 3281724
关于积分的说明 10026477
捐赠科研通 2998622
什么是DOI,文献DOI怎么找? 1645291
邀请新用户注册赠送积分活动 782740
科研通“疑难数据库(出版商)”最低求助积分说明 749891