Quantitative Analysis for Chinese and US-listed Pharmaceutical Companies by the LightGBM Algorithm

业务 算法 计算机科学
作者
Wenwen Zheng,Junjun Li,Yu Wang,Zhuyifan Ye,Hao Zhong,Hung Wan Kot,Defang Ouyang,Ging Chan
出处
期刊:Current Computer - Aided Drug Design [Bentham Science Publishers]
卷期号:19 (6): 405-415
标识
DOI:10.2174/1573409919666230126095901
摘要

This article aims to quantitatively analyze the growth trend of listed pharmaceutical companies in the US and China by a machine learning algorithm.In the last two decades, the global pharmaceutical industry has faced the dilemma of low research & development (R&D) success rate. The US is the world's largest pharmaceutical market, while China is the largest emerging market.To collect data from the database and apply machine learning to build the model.LightGBM algorithm was used to build the model and identify the factor important to the performance of pharmaceutical companies.The prediction accuracy for US companies was 80.3%, while it was 64.9% for Chinese companies. The feature importance shows that the net profit growth rate and debt liability ratio are significant in financial indicators. The results indicated that the US may continue to dominate the global pharmaceutical industry, while several Chinese pharmaceutical companies rose sharply after 2015 with the narrowing gap between the Chinese and US pharmaceutical industries.In summary, our research quantitatively analyzed the growth trend of listed pharmaceutical companies in the US and China by a machine learning algorithm, which provide a novel perspective for the global pharmaceutical industry. According to the R&D capability and profitability, 141 US-listed and 129 China-listed pharmaceutical companies were divided into four levels to evaluate the growth trend of pharmaceutical firms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
jjjmsekk发布了新的文献求助10
刚刚
科研通AI2S应助无辜洋葱采纳,获得10
刚刚
风趣凝海发布了新的文献求助10
1秒前
1秒前
2秒前
LEOhard发布了新的文献求助10
2秒前
Lily完成签到,获得积分10
2秒前
2秒前
潇洒的天与完成签到,获得积分10
3秒前
3秒前
恬恬应助木头人采纳,获得20
4秒前
华仔应助lll采纳,获得10
4秒前
安详可燕发布了新的文献求助10
5秒前
扎根发布了新的文献求助10
5秒前
蕾蕾发布了新的文献求助10
6秒前
科研通AI5应助Kryptonite采纳,获得10
6秒前
科研通AI5应助木易采纳,获得10
7秒前
zoiaii完成签到 ,获得积分10
7秒前
lei发布了新的文献求助10
7秒前
充电宝应助gao采纳,获得10
7秒前
luo0306发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
yezi发布了新的文献求助30
10秒前
10秒前
wcdwcd完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
sisyphus发布了新的文献求助20
12秒前
12秒前
wcdwcd发布了新的文献求助10
13秒前
科目三应助绒绒采纳,获得10
14秒前
ding应助重要冥茗采纳,获得10
14秒前
Yallabo完成签到,获得积分10
14秒前
14秒前
笨笨晓蓝完成签到,获得积分20
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731957
求助须知:如何正确求助?哪些是违规求助? 3276317
关于积分的说明 9996422
捐赠科研通 2991854
什么是DOI,文献DOI怎么找? 1641806
邀请新用户注册赠送积分活动 780013
科研通“疑难数据库(出版商)”最低求助积分说明 748649