A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm

超参数 电池(电) 锂离子电池 钥匙(锁) 计算机科学 短时记忆 支持向量机 可靠性工程 机器学习 工程类 人工神经网络 人工智能 物理 量子力学 循环神经网络 功率(物理) 计算机安全
作者
Yiwei Liu,Jing Sun,Yunlong Shang,Xiaodong Zhang,Song Ren,Diantao Wang
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:61: 106645-106645 被引量:91
标识
DOI:10.1016/j.est.2023.106645
摘要

The remaining useful life (RUL) estimation is one of the key functions of lithium-ion battery management systems (BMS). After the battery reaches its end-of-life (EOL), its capacity decreases rapidly and it is prone to failure, which affecting the operation of equipment and even causing safety accidents. In addition, part of the user may prematurely replace the battery for the safety of battery use, resulting in a waste of battery resources. Therefore, the accurate RUL prediction can avoid both many safety accidents and the waste of resources, which is a key and challenging problem. Accordingly, a novel RUL prediction method based on long short-term memory (LSTM) network optimized by improved sparrow search algorithm (ISSA) for lithium-ion battery is proposed in this paper. Firstly, the hyperparameters of LSTM which need to be optimized are selected since they directly affect the prediction accuracy. Then, according to the battery capacity data of different datasets, the hyperparameters of LSTM are optimized by ISSA to achieve RUL prediction. Finally, the proposed RUL prediction method is respectively compared with the support vector regression (SVR), convolutional neural networks (CNN), recurrent neural network (RNN) and LSTM. The experiment results show that the proposed RUL prediction method is more accurate and robust which contributes to the rational use of lithium-ion battery to a higher degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助淡淡的博采纳,获得10
1秒前
2秒前
WHITE发布了新的文献求助30
2秒前
酷波er应助Jazz采纳,获得20
2秒前
红莲墨生发布了新的文献求助10
3秒前
zimiao完成签到 ,获得积分10
3秒前
3秒前
mmmio发布了新的文献求助30
7秒前
TT完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
赘婿应助XD.东采纳,获得10
10秒前
radish完成签到,获得积分10
10秒前
向晚完成签到,获得积分10
11秒前
红莲墨生完成签到,获得积分10
11秒前
11秒前
蓝莓松饼完成签到,获得积分10
12秒前
13秒前
15秒前
蓝莓松饼发布了新的文献求助10
16秒前
瞿霞完成签到 ,获得积分10
16秒前
龙抬头完成签到,获得积分10
16秒前
Asoqiang发布了新的文献求助10
17秒前
17秒前
一二三四五完成签到,获得积分10
17秒前
ymmmaomao23发布了新的文献求助10
17秒前
18秒前
19秒前
淡定汉堡发布了新的文献求助10
20秒前
20秒前
zojoy完成签到,获得积分10
20秒前
21秒前
21秒前
心灵美鑫完成签到 ,获得积分10
22秒前
无极完成签到 ,获得积分10
23秒前
zzz发布了新的文献求助10
23秒前
DrJiang完成签到,获得积分10
24秒前
岳小龙完成签到 ,获得积分10
24秒前
脑洞疼应助懒洋洋采纳,获得10
25秒前
26秒前
XD.东发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010961
求助须知:如何正确求助?哪些是违规求助? 3550599
关于积分的说明 11306013
捐赠科研通 3284931
什么是DOI,文献DOI怎么找? 1810918
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811514