A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm

超参数 电池(电) 锂离子电池 钥匙(锁) 计算机科学 短时记忆 支持向量机 可靠性工程 机器学习 工程类 人工神经网络 人工智能 物理 量子力学 循环神经网络 功率(物理) 计算机安全
作者
Yiwei Liu,Jing Sun,Yunlong Shang,Xiaodong Zhang,Song Ren,Diantao Wang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:61: 106645-106645 被引量:112
标识
DOI:10.1016/j.est.2023.106645
摘要

The remaining useful life (RUL) estimation is one of the key functions of lithium-ion battery management systems (BMS). After the battery reaches its end-of-life (EOL), its capacity decreases rapidly and it is prone to failure, which affecting the operation of equipment and even causing safety accidents. In addition, part of the user may prematurely replace the battery for the safety of battery use, resulting in a waste of battery resources. Therefore, the accurate RUL prediction can avoid both many safety accidents and the waste of resources, which is a key and challenging problem. Accordingly, a novel RUL prediction method based on long short-term memory (LSTM) network optimized by improved sparrow search algorithm (ISSA) for lithium-ion battery is proposed in this paper. Firstly, the hyperparameters of LSTM which need to be optimized are selected since they directly affect the prediction accuracy. Then, according to the battery capacity data of different datasets, the hyperparameters of LSTM are optimized by ISSA to achieve RUL prediction. Finally, the proposed RUL prediction method is respectively compared with the support vector regression (SVR), convolutional neural networks (CNN), recurrent neural network (RNN) and LSTM. The experiment results show that the proposed RUL prediction method is more accurate and robust which contributes to the rational use of lithium-ion battery to a higher degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2499297293发布了新的文献求助10
刚刚
jctyp完成签到,获得积分10
刚刚
刚刚
天天快乐应助咕噜咕噜采纳,获得30
1秒前
1秒前
CodeCraft应助高妍纯采纳,获得10
2秒前
2秒前
温暖访枫发布了新的文献求助10
3秒前
Lucas应助Zhuzhu采纳,获得10
3秒前
AN举报张可研通求助涉嫌违规
3秒前
在水一方应助双丁宝贝采纳,获得10
3秒前
tianchen发布了新的文献求助10
3秒前
4秒前
4秒前
科研小白发布了新的文献求助10
5秒前
调皮囧完成签到,获得积分10
5秒前
5秒前
直率新柔完成签到 ,获得积分10
5秒前
5秒前
Tang_LiLi发布了新的文献求助10
6秒前
7秒前
Yanyu发布了新的文献求助150
7秒前
Alisha发布了新的文献求助10
9秒前
科研通AI6应助温暖访枫采纳,获得10
10秒前
丘比特应助温暖访枫采纳,获得10
10秒前
大模型应助rannn采纳,获得10
10秒前
小蘑菇应助zhaohu47采纳,获得10
10秒前
202483067发布了新的文献求助10
10秒前
qingqingdandan完成签到 ,获得积分10
11秒前
小葵发布了新的文献求助10
12秒前
12秒前
科小白完成签到 ,获得积分10
12秒前
丘比特应助张兰兰采纳,获得10
12秒前
ColdSunWu完成签到,获得积分10
14秒前
坚果发布了新的文献求助10
14秒前
Frank应助2499297293采纳,获得10
15秒前
bkagyin应助2499297293采纳,获得10
15秒前
15秒前
shtnice发布了新的文献求助20
15秒前
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588437
求助须知:如何正确求助?哪些是违规求助? 4671534
关于积分的说明 14787623
捐赠科研通 4625353
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314