A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm

超参数 电池(电) 锂离子电池 钥匙(锁) 计算机科学 短时记忆 支持向量机 可靠性工程 机器学习 工程类 人工神经网络 人工智能 物理 量子力学 循环神经网络 功率(物理) 计算机安全
作者
Yiwei Liu,Jing Sun,Yunlong Shang,Xiaodong Zhang,Song Ren,Diantao Wang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:61: 106645-106645 被引量:112
标识
DOI:10.1016/j.est.2023.106645
摘要

The remaining useful life (RUL) estimation is one of the key functions of lithium-ion battery management systems (BMS). After the battery reaches its end-of-life (EOL), its capacity decreases rapidly and it is prone to failure, which affecting the operation of equipment and even causing safety accidents. In addition, part of the user may prematurely replace the battery for the safety of battery use, resulting in a waste of battery resources. Therefore, the accurate RUL prediction can avoid both many safety accidents and the waste of resources, which is a key and challenging problem. Accordingly, a novel RUL prediction method based on long short-term memory (LSTM) network optimized by improved sparrow search algorithm (ISSA) for lithium-ion battery is proposed in this paper. Firstly, the hyperparameters of LSTM which need to be optimized are selected since they directly affect the prediction accuracy. Then, according to the battery capacity data of different datasets, the hyperparameters of LSTM are optimized by ISSA to achieve RUL prediction. Finally, the proposed RUL prediction method is respectively compared with the support vector regression (SVR), convolutional neural networks (CNN), recurrent neural network (RNN) and LSTM. The experiment results show that the proposed RUL prediction method is more accurate and robust which contributes to the rational use of lithium-ion battery to a higher degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
森活鱼块应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Dean应助科研通管家采纳,获得80
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
无花果应助mdx采纳,获得10
2秒前
2秒前
3秒前
3秒前
斯文败类应助liwei采纳,获得10
4秒前
乔乔乔完成签到,获得积分10
4秒前
向前看完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
caicai发布了新的文献求助10
6秒前
Fine发布了新的文献求助10
7秒前
chenjun7080发布了新的文献求助30
7秒前
科研通AI2S应助小文采纳,获得10
7秒前
小凯同学完成签到,获得积分10
8秒前
睿智鱼仔发布了新的文献求助10
8秒前
taco完成签到,获得积分10
8秒前
小二郎应助happiness采纳,获得10
8秒前
精明的珠发布了新的文献求助10
8秒前
Zshen发布了新的文献求助10
9秒前
星辰大海应助SY采纳,获得10
9秒前
10秒前
12秒前
12秒前
13秒前
13秒前
客念完成签到 ,获得积分10
13秒前
思源应助向前看采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293