亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm

超参数 电池(电) 锂离子电池 钥匙(锁) 计算机科学 短时记忆 支持向量机 可靠性工程 机器学习 工程类 人工神经网络 人工智能 物理 量子力学 循环神经网络 功率(物理) 计算机安全
作者
Yiwei Liu,Jing Sun,Yunlong Shang,Xiaodong Zhang,Song Ren,Diantao Wang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:61: 106645-106645 被引量:112
标识
DOI:10.1016/j.est.2023.106645
摘要

The remaining useful life (RUL) estimation is one of the key functions of lithium-ion battery management systems (BMS). After the battery reaches its end-of-life (EOL), its capacity decreases rapidly and it is prone to failure, which affecting the operation of equipment and even causing safety accidents. In addition, part of the user may prematurely replace the battery for the safety of battery use, resulting in a waste of battery resources. Therefore, the accurate RUL prediction can avoid both many safety accidents and the waste of resources, which is a key and challenging problem. Accordingly, a novel RUL prediction method based on long short-term memory (LSTM) network optimized by improved sparrow search algorithm (ISSA) for lithium-ion battery is proposed in this paper. Firstly, the hyperparameters of LSTM which need to be optimized are selected since they directly affect the prediction accuracy. Then, according to the battery capacity data of different datasets, the hyperparameters of LSTM are optimized by ISSA to achieve RUL prediction. Finally, the proposed RUL prediction method is respectively compared with the support vector regression (SVR), convolutional neural networks (CNN), recurrent neural network (RNN) and LSTM. The experiment results show that the proposed RUL prediction method is more accurate and robust which contributes to the rational use of lithium-ion battery to a higher degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助光轮2000采纳,获得10
1秒前
闪闪的梦柏完成签到 ,获得积分10
6秒前
爆米花应助尤玉采纳,获得10
12秒前
孤独且科研关注了科研通微信公众号
17秒前
adkdad完成签到,获得积分10
18秒前
corleeang完成签到 ,获得积分10
19秒前
28秒前
光轮2000发布了新的文献求助10
32秒前
情怀应助西西采纳,获得10
32秒前
32秒前
Mic应助ddt采纳,获得30
36秒前
36秒前
37秒前
kkkkk发布了新的文献求助100
38秒前
小周发布了新的文献求助10
41秒前
41秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
嘿嘿应助科研通管家采纳,获得10
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
如意秋珊完成签到 ,获得积分10
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
41秒前
上官若男应助光轮2000采纳,获得10
42秒前
亮亮发布了新的文献求助10
42秒前
45秒前
lutos完成签到,获得积分10
45秒前
46秒前
Diane发布了新的文献求助10
48秒前
HaonanZhang发布了新的文献求助10
48秒前
49秒前
亮亮完成签到,获得积分20
52秒前
lutos发布了新的文献求助10
52秒前
ceeray23发布了新的文献求助20
55秒前
共享精神应助十字花杀手采纳,获得10
58秒前
闪闪乘风完成签到 ,获得积分10
1分钟前
mark完成签到,获得积分10
1分钟前
yy完成签到,获得积分10
1分钟前
所所应助NI采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603213
求助须知:如何正确求助?哪些是违规求助? 4688305
关于积分的说明 14853132
捐赠科研通 4687740
什么是DOI,文献DOI怎么找? 2540464
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471507