A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm

超参数 电池(电) 锂离子电池 钥匙(锁) 计算机科学 短时记忆 支持向量机 可靠性工程 机器学习 工程类 人工神经网络 人工智能 计算机安全 功率(物理) 物理 量子力学 循环神经网络
作者
Yiwei Liu,Jing Sun,Yunlong Shang,Xiaodong Zhang,Song Ren,Diantao Wang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:61: 106645-106645 被引量:112
标识
DOI:10.1016/j.est.2023.106645
摘要

The remaining useful life (RUL) estimation is one of the key functions of lithium-ion battery management systems (BMS). After the battery reaches its end-of-life (EOL), its capacity decreases rapidly and it is prone to failure, which affecting the operation of equipment and even causing safety accidents. In addition, part of the user may prematurely replace the battery for the safety of battery use, resulting in a waste of battery resources. Therefore, the accurate RUL prediction can avoid both many safety accidents and the waste of resources, which is a key and challenging problem. Accordingly, a novel RUL prediction method based on long short-term memory (LSTM) network optimized by improved sparrow search algorithm (ISSA) for lithium-ion battery is proposed in this paper. Firstly, the hyperparameters of LSTM which need to be optimized are selected since they directly affect the prediction accuracy. Then, according to the battery capacity data of different datasets, the hyperparameters of LSTM are optimized by ISSA to achieve RUL prediction. Finally, the proposed RUL prediction method is respectively compared with the support vector regression (SVR), convolutional neural networks (CNN), recurrent neural network (RNN) and LSTM. The experiment results show that the proposed RUL prediction method is more accurate and robust which contributes to the rational use of lithium-ion battery to a higher degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助风中的芷蕾采纳,获得10
刚刚
派大星不科研完成签到,获得积分10
1秒前
sugar完成签到,获得积分10
1秒前
顾宇发布了新的文献求助10
1秒前
1秒前
cheng完成签到 ,获得积分20
2秒前
星辰大海应助儒雅的寄凡采纳,获得10
2秒前
2秒前
Nora关注了科研通微信公众号
3秒前
5555发布了新的文献求助10
3秒前
vocrious完成签到,获得积分10
3秒前
3秒前
orixero应助马秀玲采纳,获得10
4秒前
科研通AI6应助曦子采纳,获得10
4秒前
4秒前
三三四发布了新的文献求助10
4秒前
Frozen Flame发布了新的文献求助10
4秒前
5秒前
5秒前
咸柴完成签到,获得积分10
5秒前
Chenzhs完成签到,获得积分10
5秒前
yhp完成签到 ,获得积分10
6秒前
Auriga完成签到,获得积分10
6秒前
wzx发布了新的文献求助10
7秒前
7秒前
SY发布了新的文献求助10
8秒前
小马甲应助aaaaa22222采纳,获得10
8秒前
8秒前
laitomgpaomian完成签到 ,获得积分10
8秒前
zhu完成签到,获得积分10
9秒前
hsj完成签到,获得积分10
9秒前
麦瑞完成签到 ,获得积分20
9秒前
顾宇完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
所所应助坚强的笑天采纳,获得10
10秒前
ggdio发布了新的文献求助10
10秒前
Hello应助馨妈采纳,获得10
11秒前
JamesPei应助馨妈采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177