A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm

超参数 电池(电) 锂离子电池 钥匙(锁) 计算机科学 短时记忆 支持向量机 可靠性工程 机器学习 工程类 人工神经网络 人工智能 物理 量子力学 循环神经网络 功率(物理) 计算机安全
作者
Yiwei Liu,Jing Sun,Yunlong Shang,Xiaodong Zhang,Song Ren,Diantao Wang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:61: 106645-106645 被引量:112
标识
DOI:10.1016/j.est.2023.106645
摘要

The remaining useful life (RUL) estimation is one of the key functions of lithium-ion battery management systems (BMS). After the battery reaches its end-of-life (EOL), its capacity decreases rapidly and it is prone to failure, which affecting the operation of equipment and even causing safety accidents. In addition, part of the user may prematurely replace the battery for the safety of battery use, resulting in a waste of battery resources. Therefore, the accurate RUL prediction can avoid both many safety accidents and the waste of resources, which is a key and challenging problem. Accordingly, a novel RUL prediction method based on long short-term memory (LSTM) network optimized by improved sparrow search algorithm (ISSA) for lithium-ion battery is proposed in this paper. Firstly, the hyperparameters of LSTM which need to be optimized are selected since they directly affect the prediction accuracy. Then, according to the battery capacity data of different datasets, the hyperparameters of LSTM are optimized by ISSA to achieve RUL prediction. Finally, the proposed RUL prediction method is respectively compared with the support vector regression (SVR), convolutional neural networks (CNN), recurrent neural network (RNN) and LSTM. The experiment results show that the proposed RUL prediction method is more accurate and robust which contributes to the rational use of lithium-ion battery to a higher degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuedan发布了新的文献求助10
刚刚
背英语发布了新的文献求助10
刚刚
玩命的靖仇完成签到,获得积分10
刚刚
刚刚
科研通AI6应助Zhusy采纳,获得10
1秒前
思源应助Zhusy采纳,获得10
1秒前
机灵的波比应助affff采纳,获得10
1秒前
tombo100发布了新的文献求助50
1秒前
1秒前
碧蓝的安露完成签到 ,获得积分10
2秒前
Ava应助bluesky采纳,获得10
2秒前
2秒前
充电宝应助割牙龈肉采纳,获得10
3秒前
3秒前
3秒前
4秒前
彩色亿先发布了新的文献求助10
5秒前
田様应助anwen采纳,获得10
5秒前
领导范儿应助kk采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Jared应助科研通管家采纳,获得10
5秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
寻道图强应助科研通管家采纳,获得50
6秒前
小二郎应助科研通管家采纳,获得20
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336