A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm

超参数 电池(电) 锂离子电池 钥匙(锁) 计算机科学 短时记忆 支持向量机 可靠性工程 机器学习 工程类 人工神经网络 人工智能 物理 量子力学 循环神经网络 功率(物理) 计算机安全
作者
Yiwei Liu,Jing Sun,Yunlong Shang,Xiaodong Zhang,Song Ren,Diantao Wang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:61: 106645-106645 被引量:112
标识
DOI:10.1016/j.est.2023.106645
摘要

The remaining useful life (RUL) estimation is one of the key functions of lithium-ion battery management systems (BMS). After the battery reaches its end-of-life (EOL), its capacity decreases rapidly and it is prone to failure, which affecting the operation of equipment and even causing safety accidents. In addition, part of the user may prematurely replace the battery for the safety of battery use, resulting in a waste of battery resources. Therefore, the accurate RUL prediction can avoid both many safety accidents and the waste of resources, which is a key and challenging problem. Accordingly, a novel RUL prediction method based on long short-term memory (LSTM) network optimized by improved sparrow search algorithm (ISSA) for lithium-ion battery is proposed in this paper. Firstly, the hyperparameters of LSTM which need to be optimized are selected since they directly affect the prediction accuracy. Then, according to the battery capacity data of different datasets, the hyperparameters of LSTM are optimized by ISSA to achieve RUL prediction. Finally, the proposed RUL prediction method is respectively compared with the support vector regression (SVR), convolutional neural networks (CNN), recurrent neural network (RNN) and LSTM. The experiment results show that the proposed RUL prediction method is more accurate and robust which contributes to the rational use of lithium-ion battery to a higher degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猴子完成签到,获得积分10
刚刚
刚刚
刚刚
ll发布了新的文献求助10
1秒前
Mic应助engine采纳,获得10
1秒前
why完成签到 ,获得积分10
1秒前
土土b发布了新的文献求助10
1秒前
hqq发布了新的文献求助10
1秒前
无趣发布了新的文献求助30
1秒前
1秒前
酷波er应助追光采纳,获得10
2秒前
开朗发卡完成签到,获得积分10
3秒前
Lucas应助蓝淡定采纳,获得10
3秒前
Amosummer发布了新的文献求助10
3秒前
梓翔发布了新的文献求助10
3秒前
4秒前
5秒前
灵巧的嚣发布了新的文献求助100
5秒前
可可应助kong采纳,获得200
5秒前
大致若鱼应助hbzyydx46采纳,获得10
5秒前
dunk芒果发布了新的文献求助10
6秒前
jungle完成签到,获得积分10
6秒前
campus完成签到,获得积分10
6秒前
kissssp完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
Lucas应助个性的大船采纳,获得10
8秒前
Shan完成签到,获得积分10
8秒前
kenshin发布了新的文献求助10
9秒前
9秒前
搜集达人应助做好胶水采纳,获得10
9秒前
浮浮世世应助Pansy527采纳,获得30
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
科研通AI6应助芽芽豆采纳,获得10
11秒前
刘鑫慧完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957