亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm

超参数 电池(电) 锂离子电池 钥匙(锁) 计算机科学 短时记忆 支持向量机 可靠性工程 机器学习 工程类 人工神经网络 人工智能 物理 量子力学 循环神经网络 功率(物理) 计算机安全
作者
Yiwei Liu,Jing Sun,Yunlong Shang,Xiaodong Zhang,Song Ren,Diantao Wang
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:61: 106645-106645 被引量:112
标识
DOI:10.1016/j.est.2023.106645
摘要

The remaining useful life (RUL) estimation is one of the key functions of lithium-ion battery management systems (BMS). After the battery reaches its end-of-life (EOL), its capacity decreases rapidly and it is prone to failure, which affecting the operation of equipment and even causing safety accidents. In addition, part of the user may prematurely replace the battery for the safety of battery use, resulting in a waste of battery resources. Therefore, the accurate RUL prediction can avoid both many safety accidents and the waste of resources, which is a key and challenging problem. Accordingly, a novel RUL prediction method based on long short-term memory (LSTM) network optimized by improved sparrow search algorithm (ISSA) for lithium-ion battery is proposed in this paper. Firstly, the hyperparameters of LSTM which need to be optimized are selected since they directly affect the prediction accuracy. Then, according to the battery capacity data of different datasets, the hyperparameters of LSTM are optimized by ISSA to achieve RUL prediction. Finally, the proposed RUL prediction method is respectively compared with the support vector regression (SVR), convolutional neural networks (CNN), recurrent neural network (RNN) and LSTM. The experiment results show that the proposed RUL prediction method is more accurate and robust which contributes to the rational use of lithium-ion battery to a higher degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
风月难安完成签到,获得积分10
9秒前
风月难安发布了新的文献求助10
13秒前
打打应助一事无成彭某人采纳,获得10
21秒前
26秒前
Sherry完成签到 ,获得积分10
32秒前
袁青寒完成签到 ,获得积分10
33秒前
爱航哥多久了完成签到 ,获得积分10
35秒前
认真的幻姬完成签到,获得积分10
39秒前
42秒前
1分钟前
1分钟前
freya发布了新的文献求助10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
chloe完成签到,获得积分10
1分钟前
怕触电的电源完成签到 ,获得积分10
1分钟前
浮游应助chloe采纳,获得10
2分钟前
严文强完成签到,获得积分10
2分钟前
SZU_Julian完成签到,获得积分10
2分钟前
2分钟前
2分钟前
米米完成签到,获得积分10
2分钟前
醉熏的荣轩完成签到 ,获得积分10
2分钟前
米米发布了新的文献求助10
2分钟前
靓丽的熠彤完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
iorpi完成签到,获得积分10
3分钟前
bkagyin应助一事无成彭某人采纳,获得10
3分钟前
3分钟前
Viiigo完成签到,获得积分10
3分钟前
xiao完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
Cu完成签到 ,获得积分10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137259
求助须知:如何正确求助?哪些是违规求助? 4337127
关于积分的说明 13511092
捐赠科研通 4175660
什么是DOI,文献DOI怎么找? 2289571
邀请新用户注册赠送积分活动 1290099
关于科研通互助平台的介绍 1231727