An Improved Mayfly Optimization Algorithm Based on Quasi-Oppositional Learning

蜉蝣 算法 计算机科学 人工智能 机器学习 生物 生态学 若虫
作者
Leichao Yang,Yinggan Tang
标识
DOI:10.2139/ssrn.4313361
摘要

Random guesses are usually adopted in mayfly optimization algorithm (MOA) when prior knowledge about the solution is absent. The distances between the guesses and the optimal solution have a great impact on the convergence speed and solution accuracy. In this paper, an improved MOA based on quasi-oppositional based learning (QOBL) is proposed, called it as QOBLMOA. In the proposed QOBL-MOA, QOBL is introduced into the population initialization and position update process of MOA. In the initialization stage, the quasi-oppositional position of each mayfly’s position is generated. The best one between the initial position and its corresponding quasi-oppositional position is selected as the final initial position of the mayfly. Similarly, in the position updating stage, a quasi-oppositional position of each mayfly’s current position is generated, and the best one between them is selected as the final current position of the mayfly. Since the QOBL has the potential to explore a position nearer to the optimal solution than random guess, the proposed QOBL-MOA not only has faster convergence speed but also has a larger probability to jump out from the local optimum. The proposed QOBL-MOA is evaluated on 16 benchmark functions and 4 engineering design problems. Experimental results confirm QOBL-MOA performs better than other meta-heuristic algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮火完成签到 ,获得积分10
1秒前
zero完成签到,获得积分10
1秒前
合适鲜花完成签到,获得积分20
1秒前
2秒前
yyy完成签到 ,获得积分10
3秒前
聪明灭绝完成签到 ,获得积分10
3秒前
彤彤应助张小尤采纳,获得10
3秒前
科目三应助lily88采纳,获得10
4秒前
寰2023完成签到,获得积分10
4秒前
5秒前
大鱼发布了新的文献求助10
5秒前
6秒前
慕青应助后笑晴采纳,获得10
6秒前
jtj发布了新的文献求助10
6秒前
6秒前
6秒前
顺利又菱完成签到 ,获得积分10
7秒前
神勇的傲安完成签到,获得积分10
7秒前
Ye发布了新的文献求助10
8秒前
傲娇的凡旋应助翼静采纳,获得10
9秒前
10秒前
可爱冲击完成签到,获得积分10
10秒前
逝水无痕发布了新的文献求助10
11秒前
小美完成签到,获得积分10
11秒前
12秒前
红泥小火炉完成签到,获得积分10
12秒前
13秒前
13秒前
Hello应助三七采纳,获得10
14秒前
小程同学发布了新的文献求助10
14秒前
汉堡包应助乐观的非笑采纳,获得10
14秒前
李爱国应助haifang采纳,获得10
15秒前
15秒前
FengYun发布了新的文献求助10
15秒前
15秒前
汉堡包应助33采纳,获得10
15秒前
16秒前
菠菜应助盼盼采纳,获得150
16秒前
白鹤眠完成签到,获得积分10
17秒前
HJJHJH发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159