材料科学
热导率
拉曼光谱
异质结
电导
纳米技术
范德瓦尔斯力
声子
热的
热阻
电子设备和系统的热管理
光电子学
凝聚态物理
复合材料
光学
热力学
化学
分子
物理
工程类
有机化学
机械工程
作者
Fan Ye,Qingchang Liu,Baoxing Xu,Philip X.‐L. Feng,Xian Zhang
出处
期刊:Small
[Wiley]
日期:2023-02-07
卷期号:19 (12)
被引量:16
标识
DOI:10.1002/smll.202205726
摘要
Heat dissipation is a major limitation of high-performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra-thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra-high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single-layer transition metal dichalcogenides MX2 (MoS2 , WSe2 , WS2 ) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate-supported hBN/MX2 /hBN heterostructures with varying laser power and temperature, the out-of-plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX2 and hBN reaches 74 ± 25 MW m-2 K-1 , which is at least ten times higher than the interfacial thermal conductance of MX2 in non-encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra-high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX2 /hBN structures and shed light on building novel hBN-encapsulated nanoelectronic devices with enhanced thermal management.
科研通智能强力驱动
Strongly Powered by AbleSci AI