Optimised graded metamaterials for mechanical energy confinement and amplification via reinforcement learning

谐振器 超材料 强化学习 稳健性(进化) 振荡(细胞信号) 声学 计算机科学 控制理论(社会学) 材料科学 物理 光学 人工智能 生物化学 化学 遗传学 控制(管理) 生物 基因
作者
Luca Rosafalco,Jacopo Maria De Ponti,Luca Iorio,Raffaele Ardito,Alberto Corigliano
出处
期刊:European Journal of Mechanics A-solids [Elsevier BV]
卷期号:99: 104947-104947 被引量:10
标识
DOI:10.1016/j.euromechsol.2023.104947
摘要

A reinforcement learning approach to design optimised graded metamaterials for mechanical energy confinement and amplification is described. Through the proximal policy optimisation algorithm, the reinforcement agent is trained to optimally set the lengths and the spacing of an array of resonators. The design optimisation problem is formalised in a Markov decision problem by splitting the optimisation procedure into a discrete number of decisions. Being the physics of graded metamaterials governed by the spatial distribution of local resonances, the space of possible configurations is constrained by using a continuous function for the resonators arrangement. A preliminary analytical investigation has been performed to characterise the dispersive properties of the analysed system by treating it as a locally resonant system. The outcomes of the optimisation procedure confirms the results of previous investigations, highlighting both the validity of the proposed approach and the robustness of the systems of graded resonators when employed for mechanical energy confinement and amplification. The role of the resonator spacing is shown to be secondary with respect to the resonator lengths or, in other words, with respect to the oscillation frequencies of the resonators. However, it is also demonstrated that reducing the number of resonators can be advantageous. The outcomes related to the joint optimisation of the resonator lengths and spacing, thanks also to the adaptive control of the analysis duration, overcome significantly the performance of previously known systems by working almost uniquely on enlarging the time in which the harvester oscillations take place without amplifying these oscillations. The proposed procedure is suitable to be applied to a wide range of design optimisation problems in which the effect of the design choices can be assessed through numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
了又柳完成签到 ,获得积分10
2秒前
大胆的忆安完成签到 ,获得积分10
2秒前
RATHER发布了新的文献求助10
6秒前
666完成签到,获得积分20
11秒前
勤恳的TT完成签到 ,获得积分10
13秒前
MOOTEA完成签到 ,获得积分10
17秒前
dh完成签到,获得积分10
18秒前
JZA完成签到 ,获得积分10
26秒前
林夕完成签到 ,获得积分10
29秒前
00完成签到 ,获得积分10
33秒前
AUGKING27完成签到 ,获得积分10
42秒前
Titi完成签到 ,获得积分10
51秒前
54秒前
loren313完成签到,获得积分0
58秒前
momo完成签到,获得积分10
59秒前
漂亮芹菜发布了新的文献求助10
1分钟前
莫问今生完成签到,获得积分10
1分钟前
漂亮芹菜完成签到,获得积分10
1分钟前
Rainielove0215完成签到,获得积分0
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
minino完成签到 ,获得积分10
1分钟前
1分钟前
泡泡茶壶o完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得30
1分钟前
林梓完成签到 ,获得积分10
1分钟前
1分钟前
陈龙平完成签到 ,获得积分10
1分钟前
1分钟前
唠叨的天亦完成签到 ,获得积分10
1分钟前
研友_ZbP41L完成签到 ,获得积分10
1分钟前
wangermazi完成签到,获得积分10
1分钟前
科研通AI5应助生动思萱采纳,获得10
1分钟前
一禅完成签到 ,获得积分10
1分钟前
谢陈完成签到 ,获得积分10
2分钟前
Simpson完成签到 ,获得积分10
2分钟前
2分钟前
Dr.Sun完成签到,获得积分10
2分钟前
麦麦脆汁鸡完成签到 ,获得积分10
2分钟前
CASLSD完成签到 ,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
江岸区志(下卷) 800
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Global Higher Education Practices in Times of Crisis: Questions for Sustainability and Digitalization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695154
求助须知:如何正确求助?哪些是违规求助? 3246674
关于积分的说明 9850562
捐赠科研通 2958259
什么是DOI,文献DOI怎么找? 1622046
邀请新用户注册赠送积分活动 767731
科研通“疑难数据库(出版商)”最低求助积分说明 741256