Enhancing Multiscale Representations With Transformer for Remote Sensing Image Semantic Segmentation

计算机科学 人工智能 编码器 分割 卷积神经网络 变压器 特征提取 模式识别(心理学) 图像分割 特征学习 计算机视觉 量子力学 操作系统 物理 电压
作者
Tao Xiao,Yikun Liu,Yuwen Huang,Mingsong Li,Gongping Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:40
标识
DOI:10.1109/tgrs.2023.3256064
摘要

Semantic segmentation is an extremely challenging task in high-resolution remote sensing (HRRS) images as objects have complex spatial layouts and enormous variations in appearance. Convolutional neural networks (CNNs) have excellent ability to extract local features and have been widely applied as the feature extractor for various vision tasks. However, due to the inherent inductive bias of convolution operation, CNNs inevitably have limitations in modeling long-range dependencies. Transformer can capture global representations well, but unfortunately ignores the details of local features and has high computational and spatial complexity in processing high-resolution feature maps. In this paper, we propose a novel hybrid architecture for HRRS image segmentation, termed EMRT, to exploit the advantages of convolution operations and Transformer to enhance multi-scale representation learning. We incorporate the deformable self-attention mechanism in the Transformer to automatically adjust the receptive field, and design an encoder-decoder architecture accordingly to achieve efficient context modeling. Specifically, the CNN is constructed to extract feature representations. In the encoder, local features and global representations at different resolutions are extracted by the CNN and Transformer, respectively, and fused in an interactive manner. Moreover, a separate spatial branch is designed to extract multi-scale contextual information as queries, and global dependencies between features at different scales are efficiently established by the decoder. Extensive experiments on three public remote sensing datasets demonstrate the superiority of EMRT and indicate that the overall performance of our method outperforms state-of-the-art methods. Code is available at https://github.com/peach-xiao/EMRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉枫发布了新的文献求助10
1秒前
1秒前
ceeray23应助GEZI采纳,获得10
1秒前
Crema应助话家采纳,获得10
2秒前
科研通AI2S应助998172采纳,获得10
3秒前
Shelby完成签到,获得积分10
3秒前
无名老大应助冷傲的小之采纳,获得30
4秒前
longlong发布了新的文献求助30
5秒前
思源应助soso1010采纳,获得10
5秒前
5秒前
ou发布了新的文献求助10
6秒前
6秒前
7秒前
Bystander完成签到 ,获得积分10
7秒前
7秒前
小士兵泥人完成签到,获得积分10
8秒前
8秒前
lh发布了新的文献求助10
8秒前
磕盐民工给磕盐民工的求助进行了留言
9秒前
刘歌发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
希望天下0贩的0应助盷昀采纳,获得10
10秒前
清浅时光发布了新的文献求助10
10秒前
10秒前
hins完成签到,获得积分10
11秒前
11秒前
lay9519发布了新的文献求助30
11秒前
酷波er应助keigo采纳,获得10
12秒前
轻松念蕾发布了新的文献求助10
12秒前
搞怪千凝完成签到,获得积分10
12秒前
Swilder完成签到 ,获得积分10
13秒前
13秒前
123干嘛呢完成签到,获得积分20
14秒前
自觉枫完成签到,获得积分10
14秒前
噜啦啦啦发布了新的文献求助10
14秒前
AU发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454966
求助须知:如何正确求助?哪些是违规求助? 3050269
关于积分的说明 9020709
捐赠科研通 2738874
什么是DOI,文献DOI怎么找? 1502329
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178