Contribution of semen to early embryo development: fertilization and beyond

精子 生物 男科 人类受精 胚胎 卵母细胞 电容 胚胎发生 合子 细胞生物学 遗传学 医学
作者
Montserrat Vallet-Buisan,Rajwa Mecca,Céline Jones,Kevin Coward,Marc Yeste
出处
期刊:Human Reproduction Update [Oxford University Press]
卷期号:29 (4): 395-433 被引量:21
标识
DOI:10.1093/humupd/dmad006
摘要

It has long been thought that the factors affecting embryo and foetal development were exclusively maternally derived; hence, if issues regarding fertility and embryo development were to arise, the blame has traditionally been placed solely on the mother. An escalating interest in how paternal factors influence embryo development, however, has begun to prove otherwise. Evidence suggests that both seminal plasma (SP) and sperm contribute multiple factors that shape embryogenesis. This review thus focuses on the role that semen has in driving early embryonic development, and describes how paternal factors, such as SP, sperm centriole, sperm proteins, sperm RNA, sperm DNA, and its integrity, together with epigenetics, may influence the female reproductive tract and post-fertilization events. The important contributions of paternal factors to embryo development highlight the imperative need for further research in this area, which is sure to bring forth breakthroughs leading to improvements in infertility diagnosis and ART as well as reducing the risk of miscarriage.This review provides a comprehensive overview of the role of human semen in development of the early embryo, with the aim of providing a better understanding of the influence of SP and sperm on early embryonic divisions, gene and protein expression, miscarriage, and congenital diseases.PubMed searches were performed using the terms 'sperm structure', 'capacitation', 'acrosome reaction', 'fertilization', 'oocyte activation', 'PLCζ', 'PAWP', 'sperm-borne oocyte activation factor', 'oocyte activation deficiency', 'sperm centriole', 'sperm transport', 'sperm mitochondria', 'seminal plasma', 'sperm epigenetics', 'sperm histone modifications', 'sperm DNA methylation', 'sperm-derived transcripts', 'sperm-derived proteins', 'sperm DNA fragmentation', 'sperm mRNA', 'sperm miRNAs', 'sperm piRNAs', and 'sperm-derived aneuploidy'. The reviewed articles were restricted to those published in English between 1980 and 2022.The data suggest that male-derived factors contribute much more than just the male haploid genome to the early embryo. Evidence indicates that semen contributes multiple factors that help shape the fate of embryogenesis. These male-derived factors include contributions from SP, the paternal centriole, RNA and proteins, and DNA integrity. In addition, epigenetic changes have an impact on the female reproductive tract, fertilization, and early stages of embryo development. For example, recent proteomic and transcriptomic studies have identified several sperm-borne markers that play important roles in oocyte fertilization and embryogenesis.This review highlights that several male-derived factors are required to work in tandem with female counterparts to allow for correct fertilization and development of the early embryo. A deeper understanding of the contributions of paternal factors that are shuttled over from the sperm cell to the embryo can shed light on how to improve ART from an andrological perspective. Further studies may aid in preventing the passing on of genetic and epigenetic abnormalities of paternal origin, thus decreasing the incidence of male factor infertility. In addition, understanding the exact mechanisms of paternal contribution may assist reproductive scientists and IVF clinicians in determining new causes of recurrent early miscarriage or fertilization failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
不配.应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
思源应助科研通管家采纳,获得30
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
2秒前
脑洞疼应助村村采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
孤独代亦发布了新的文献求助10
4秒前
yy发布了新的文献求助10
4秒前
小齐怪完成签到,获得积分10
5秒前
5秒前
hihi发布了新的文献求助10
5秒前
6秒前
美丽的爆米花完成签到,获得积分10
9秒前
yangts2021发布了新的文献求助10
9秒前
月亮煮粥发布了新的文献求助10
9秒前
宜醉宜游宜睡应助荣一采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
Singularity应助hanatae采纳,获得10
11秒前
ZBB完成签到,获得积分10
11秒前
11秒前
Zhu完成签到,获得积分10
11秒前
稳重乌龟完成签到,获得积分10
11秒前
我服有点黑给有魅力荟的求助进行了留言
12秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160802
求助须知:如何正确求助?哪些是违规求助? 2811883
关于积分的说明 7893940
捐赠科研通 2470842
什么是DOI,文献DOI怎么找? 1315775
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053