AMGB: Trajectory prediction using attention-based mechanism GCN-BiLSTM in IOV

计算机科学 弹道 人工智能 图形 机制(生物学) 保险丝(电气) 运动(物理) 机器学习 理论计算机科学 工程类 天文 认识论 电气工程 物理 哲学
作者
Ruonan Li,Yang Qin,Jingbo Wang,Hongye Wang
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:169: 17-27 被引量:14
标识
DOI:10.1016/j.patrec.2023.03.006
摘要

Accurate and reliable prediction of vehicle trajectories is closely related to the path planning of intelligent vehicles and contributes to intelligent transportation safety, especially in dynamic and uncertain scenarios. However, most existing methods have difficulty in accurately capturing vehicle interactions and the dependencies between vehicle multimodal features in dynamic and uncertain driving environments. Thus, we propose a new Attention-based Mechanism GCN-BiLSTM trajectory prediction model (AMGB) which tackles trajectory prediction in dynamic environments from a new perspective of predicting vehicle motion direction and motion distance. Firstly, the Attention-based Time-Frequency domain Graph Convolutional Network (AT-GCN) module learns the dependencies between vehicle multimodal features and extracts coarse-grained features containing directions information of future trajectories. Then the Multi-structure based Bidirectional Long- Short Term Memory network (M-BiLSTM) module can acquire fine-grained features containing future trajectory distance from vehicle interaction information by the memory storage function of BiLSTM. Finally, we apply the attention mechanism to fuse the coarse and fine-grained features to establish the mapping relationship between vehicle multimodal features and interaction behaviors, and future trajectories. The proposed AMGB model is evaluated on the NGSIM dataset, the results confirm that our model outperforms other state-of-the-art models in both short-long term trajectory prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunshine发布了新的文献求助10
刚刚
1秒前
yucj发布了新的文献求助10
1秒前
1秒前
雪雪儿发布了新的文献求助10
2秒前
机智友蕊完成签到 ,获得积分10
2秒前
McbxM发布了新的文献求助10
3秒前
醉熏的幼珊完成签到,获得积分10
3秒前
3秒前
繁星发布了新的文献求助10
3秒前
3秒前
4秒前
6秒前
7秒前
聪慧恶天发布了新的文献求助10
7秒前
笑笑发布了新的文献求助10
7秒前
dongkk发布了新的文献求助10
7秒前
x5kyi发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
life完成签到,获得积分10
10秒前
threonine完成签到,获得积分10
11秒前
orixero应助犹豫帆布鞋采纳,获得10
11秒前
CodeCraft应助直率的花生采纳,获得10
12秒前
三金发布了新的文献求助30
12秒前
shilong.yang发布了新的文献求助10
12秒前
12秒前
cherlie应助McbxM采纳,获得10
12秒前
13秒前
13秒前
uu发布了新的文献求助30
14秒前
yaoyu发布了新的文献求助10
14秒前
threonine发布了新的文献求助10
14秒前
泽灵发布了新的文献求助10
15秒前
爆米花应助Majiko采纳,获得10
17秒前
17秒前
深情安青应助隐形的蓝天采纳,获得10
17秒前
可乐发布了新的文献求助10
18秒前
马丝雨完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959051
求助须知:如何正确求助?哪些是违规求助? 3505388
关于积分的说明 11123550
捐赠科研通 3237039
什么是DOI,文献DOI怎么找? 1788976
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802806