ADPL: Adaptive Dual Path Learning for Domain Adaptation of Semantic Segmentation

计算机科学 分割 人工智能 路径(计算) 图像翻译 图像分割 领域(数学分析) 翻译(生物学) 推论 模式识别(心理学) 域适应 计算机视觉 尺度空间分割 图像(数学) 机器学习 数学 数学分析 生物化学 化学 信使核糖核酸 分类器(UML) 基因 程序设计语言
作者
Yi-Ting Cheng,Fangyun Wei,Jianmin Bao,Lizhuang Ma,Wenqiang Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (8): 9339-9356 被引量:8
标识
DOI:10.1109/tpami.2023.3248294
摘要

To alleviate the need for large-scale pixel-wise annotations, domain adaptation for semantic segmentation trains segmentation models on synthetic data (source) with computer-generated annotations, which can be then generalized to segment realistic images (target). Recently, self-supervised learning (SSL) with a combination of image-to-image translation shows great effectiveness in adaptive segmentation. The most common practice is to perform SSL along with image translation to well align a single domain (source or target). However, in this single-domain paradigm, unavoidable visual inconsistency raised by image translation may affect subsequent learning. In addition, pseudo labels generated by a single segmentation model aligned in either the source or target domain may be not accurate enough for SSL. In this paper, based on the observation that domain adaptation frameworks performed in the source and target domain are almost complementary, we propose a novel adaptive dual path learning (ADPL) framework to alleviate visual inconsistency and promote pseudo-labeling by introducing two interactive single-domain adaptation paths aligned in source and target domain respectively. To fully explore the potential of this dual-path design, novel technologies such as dual path image translation (DPIT), dual path adaptive segmentation (DPAS), dual path pseudo label generation (DPPLG) and Adaptive ClassMix are proposed. The inference of ADPL is extremely simple, only one segmentation model in the target domain is employed. Our ADPL outperforms the state-of-the-art methods by large margins on GTA5 $\rightarrow$ Cityscapes, SYNTHIA $\rightarrow$ Cityscapes and GTA5 $\rightarrow$ BDD100K scenarios. Code and models are available at https://github.com/royee182/DPL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷悦完成签到,获得积分10
刚刚
jzy发布了新的文献求助10
1秒前
muxiyan发布了新的文献求助10
3秒前
意外的月饼完成签到,获得积分10
3秒前
安安发布了新的文献求助10
4秒前
在水一方应助0707007采纳,获得10
4秒前
4秒前
xv发布了新的文献求助10
4秒前
Tonsil01发布了新的文献求助10
5秒前
丘比特应助胡萝卜棒棒糖采纳,获得10
5秒前
李傲发布了新的文献求助10
6秒前
灵犀发布了新的文献求助10
11秒前
科研通AI5应助咕噜咕噜采纳,获得30
11秒前
11秒前
12秒前
小猪坨完成签到,获得积分10
14秒前
15秒前
CipherSage应助坦率的棉花糖采纳,获得10
15秒前
xv完成签到,获得积分10
16秒前
甜鱼发布了新的文献求助20
17秒前
wangjuan完成签到,获得积分10
17秒前
冰凌心恋完成签到,获得积分10
17秒前
傲娇文博发布了新的文献求助10
17秒前
18秒前
什么东西完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
彭于晏应助DrJiang采纳,获得10
18秒前
Langsam发布了新的文献求助10
19秒前
汉堡包应助xushanqi采纳,获得10
20秒前
孙铭泽发布了新的文献求助10
20秒前
无餍应助Allen采纳,获得10
21秒前
科研通AI5应助李傲采纳,获得10
21秒前
23秒前
24秒前
orixero应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得30
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543046
求助须知:如何正确求助?哪些是违规求助? 3120471
关于积分的说明 9342549
捐赠科研通 2818520
什么是DOI,文献DOI怎么找? 1549595
邀请新用户注册赠送积分活动 722196
科研通“疑难数据库(出版商)”最低求助积分说明 713049