Human-guided deep learning with ante-hoc explainability by convolutional network from non-image data for pregnancy prognostication

计算机科学 深度学习 卷积神经网络 人工智能 机器学习
作者
Herdiantri Sufriyana,Yu-Wei Wu,Emily Chia‐Yu Su
出处
期刊:Neural Networks [Elsevier BV]
卷期号:162: 99-116
标识
DOI:10.1016/j.neunet.2023.02.020
摘要

Deep learning is applied in medicine mostly due to its state-of-the-art performance for diagnostic imaging. Supervisory authorities also require the model to be explainable, but most explain the model after development (post hoc) instead of incorporating explanation into the design (ante hoc). This study aimed to demonstrate a human-guided deep learning with ante-hoc explainability by convolutional network from non-image data to develop, validate, and deploy a prognostic prediction model for PROM and an estimator of time of delivery using a nationwide health insurance database. To guide modeling, we constructed and verified association diagrams respectively from literatures and electronic health records. Non-image data were transformed into meaningful images utilizing predictor-to-predictor similarities, harnessing the power of convolutional neural network mostly used for diagnostic imaging. The network architecture was also inferred from the similarities. This resulted the best model for prelabor rupture of membranes (n=883, 376) with the area under curves 0.73 (95% CI 0.72 to 0.75) and 0.70 (95% CI 0.69 to 0.71) respectively by internal and external validations, and outperformed previous models found by systematic review. It was explainable by knowledge-based diagrams and model representation. This allows prognostication with actionable insights for preventive medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助踏雪无痕采纳,获得10
刚刚
刚刚
刚刚
1秒前
2秒前
WO完成签到,获得积分20
2秒前
李健的小迷弟应助Dr.coco采纳,获得10
3秒前
wnx001111发布了新的文献求助10
3秒前
脑洞疼应助nqyKOj采纳,获得20
3秒前
隐形曼青应助千秋入画采纳,获得10
3秒前
稳重诗珊完成签到,获得积分10
3秒前
3秒前
星辰大海应助哈士轩采纳,获得10
3秒前
st完成签到,获得积分10
3秒前
4秒前
jianlong0206完成签到,获得积分10
4秒前
wanci应助xxx采纳,获得10
4秒前
4秒前
果冻信号发布了新的文献求助10
4秒前
hdbys发布了新的文献求助10
4秒前
我爱吃糯米团子完成签到,获得积分10
4秒前
一瓶水发布了新的文献求助10
5秒前
SYLH应助橙子采纳,获得30
5秒前
ZZDXXX发布了新的文献求助30
6秒前
6秒前
糕糕发布了新的文献求助10
6秒前
6秒前
6秒前
善学以致用应助终澈采纳,获得30
7秒前
巳明完成签到,获得积分10
7秒前
嘻嘻嘻发布了新的文献求助10
7秒前
欢呼妙菱发布了新的文献求助10
8秒前
lee完成签到,获得积分10
8秒前
8秒前
9秒前
诚心尔琴完成签到,获得积分20
9秒前
9秒前
酱子完成签到,获得积分10
10秒前
10秒前
wnx001111完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635