Human-guided deep learning with ante-hoc explainability by convolutional network from non-image data for pregnancy prognostication

计算机科学 深度学习 卷积神经网络 人工智能 机器学习
作者
Herdiantri Sufriyana,Yu-Wei Wu,Emily Chia‐Yu Su
出处
期刊:Neural Networks [Elsevier BV]
卷期号:162: 99-116
标识
DOI:10.1016/j.neunet.2023.02.020
摘要

Deep learning is applied in medicine mostly due to its state-of-the-art performance for diagnostic imaging. Supervisory authorities also require the model to be explainable, but most explain the model after development (post hoc) instead of incorporating explanation into the design (ante hoc). This study aimed to demonstrate a human-guided deep learning with ante-hoc explainability by convolutional network from non-image data to develop, validate, and deploy a prognostic prediction model for PROM and an estimator of time of delivery using a nationwide health insurance database. To guide modeling, we constructed and verified association diagrams respectively from literatures and electronic health records. Non-image data were transformed into meaningful images utilizing predictor-to-predictor similarities, harnessing the power of convolutional neural network mostly used for diagnostic imaging. The network architecture was also inferred from the similarities. This resulted the best model for prelabor rupture of membranes (n=883, 376) with the area under curves 0.73 (95% CI 0.72 to 0.75) and 0.70 (95% CI 0.69 to 0.71) respectively by internal and external validations, and outperformed previous models found by systematic review. It was explainable by knowledge-based diagrams and model representation. This allows prognostication with actionable insights for preventive medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
走走发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
葉落葉飄完成签到,获得积分10
3秒前
动听元彤完成签到,获得积分10
3秒前
默默的聪健完成签到,获得积分10
4秒前
4秒前
4秒前
ZZH发布了新的文献求助10
4秒前
5秒前
yelaikuhun74发布了新的文献求助10
5秒前
GDY完成签到,获得积分10
5秒前
6秒前
何休槊发布了新的文献求助20
6秒前
6秒前
Cactus应助cat_head采纳,获得10
6秒前
HonamC完成签到,获得积分10
7秒前
Windycityguy完成签到,获得积分10
7秒前
科研通AI5应助bluesiryao采纳,获得10
7秒前
我爱紫丁香完成签到,获得积分10
8秒前
JJ完成签到,获得积分10
8秒前
Hoooo...发布了新的文献求助10
9秒前
asd发布了新的文献求助10
9秒前
9秒前
有足量NaCl发布了新的文献求助10
9秒前
研友_VZG7GZ应助eternity136采纳,获得10
10秒前
10秒前
pomelost发布了新的文献求助10
10秒前
煎饼果子完成签到,获得积分10
11秒前
mj完成签到,获得积分10
11秒前
12秒前
MHX完成签到,获得积分10
13秒前
14秒前
Doubleyang1完成签到,获得积分20
15秒前
i2z关注了科研通微信公众号
15秒前
15秒前
研友_VZG7GZ应助碧蓝的觅露采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403