亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Understanding Flow Experience in Video Learning by Multimodal Data

人工智能 无聊 模式 计算机科学 机器学习 多任务学习 多层感知器 均方误差 语音识别 模式识别(心理学) 人工神经网络 任务(项目管理) 统计 心理学 数学 社会心理学 社会学 经济 社会科学 管理
作者
Yankai Wang,Bing Chen,Hongyan Liu,Zhiguo Hu
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:40 (12): 3144-3158 被引量:4
标识
DOI:10.1080/10447318.2023.2181878
摘要

Video-based learning has successfully become an effective alternative to face-to-face instruction. In such situations, modeling or predicting learners' flow experience during video learning is critical for enhancing the learning experience and advancing learning technologies. In this study, we set up an instructional scenario for video learning according to flow theory. Different learning states, i.e., boredom, fit (flow), and anxiety, were successfully induced by varying the difficulty levels of the learning task. We collected learners' electrocardiogram (ECG) signals as well as facial video, upper body posture and speech data during the learning process. We proposed classification models of the learning state and regression models to predict flow experience by utilizing different combinations of the data from the four modalities. The results showed that the model performance of learning state recognition was significantly improved by the decision-level fusion of multimodal data. By using the selected important features from all data sources, such as the standard deviation of normal to normal R-R intervals (SDNN), high-frequency (HF) heart rate variability and mel-frequency cepstral coefficients (MFCC), the multilayer perceptron (MLP) classifier gave the best recognition result of learning states (i.e., mean AUC of 0.780). The recognition accuracy of boredom, fit (flow) and anxiety reached 47.48%, 80.89% and 47.41%, respectively. For flow experience prediction, the MLP regressor based on the fusion of two modalities (i.e., ECG and posture) achieved the optimal prediction (i.e., mean RMSE of 0.717). This study demonstrates the feasibility of modeling and predicting the flow experience in video learning by combining multimodal data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
7秒前
10秒前
瘦瘦以亦发布了新的文献求助10
13秒前
小马甲应助瘦瘦以亦采纳,获得10
17秒前
28秒前
34秒前
54秒前
小左完成签到,获得积分20
54秒前
55秒前
小左发布了新的文献求助10
59秒前
59秒前
ooops完成签到,获得积分10
1分钟前
1分钟前
SUNny完成签到 ,获得积分10
1分钟前
无花果应助瓜兮兮CYY采纳,获得10
1分钟前
1分钟前
1分钟前
Lan完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
ooops关注了科研通微信公众号
2分钟前
2分钟前
刘言发布了新的文献求助20
2分钟前
儒雅的十八完成签到,获得积分10
2分钟前
瓜兮兮CYY发布了新的文献求助10
2分钟前
kukudou2发布了新的文献求助30
2分钟前
ooops发布了新的文献求助10
2分钟前
顾矜应助杰老爷采纳,获得10
2分钟前
方沅完成签到,获得积分10
2分钟前
2分钟前
刘言完成签到,获得积分20
2分钟前
2分钟前
杰老爷发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
HH发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664254
求助须知:如何正确求助?哪些是违规求助? 4860155
关于积分的说明 15107455
捐赠科研通 4822794
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535928
关于科研通互助平台的介绍 1494160