清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Understanding Flow Experience in Video Learning by Multimodal Data

人工智能 无聊 模式 计算机科学 机器学习 多任务学习 多层感知器 均方误差 语音识别 模式识别(心理学) 人工神经网络 任务(项目管理) 统计 心理学 数学 社会心理学 社会学 经济 社会科学 管理
作者
Yankai Wang,Bing Chen,Hongyan Liu,Zhiguo Hu
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:40 (12): 3144-3158 被引量:4
标识
DOI:10.1080/10447318.2023.2181878
摘要

Video-based learning has successfully become an effective alternative to face-to-face instruction. In such situations, modeling or predicting learners' flow experience during video learning is critical for enhancing the learning experience and advancing learning technologies. In this study, we set up an instructional scenario for video learning according to flow theory. Different learning states, i.e., boredom, fit (flow), and anxiety, were successfully induced by varying the difficulty levels of the learning task. We collected learners' electrocardiogram (ECG) signals as well as facial video, upper body posture and speech data during the learning process. We proposed classification models of the learning state and regression models to predict flow experience by utilizing different combinations of the data from the four modalities. The results showed that the model performance of learning state recognition was significantly improved by the decision-level fusion of multimodal data. By using the selected important features from all data sources, such as the standard deviation of normal to normal R-R intervals (SDNN), high-frequency (HF) heart rate variability and mel-frequency cepstral coefficients (MFCC), the multilayer perceptron (MLP) classifier gave the best recognition result of learning states (i.e., mean AUC of 0.780). The recognition accuracy of boredom, fit (flow) and anxiety reached 47.48%, 80.89% and 47.41%, respectively. For flow experience prediction, the MLP regressor based on the fusion of two modalities (i.e., ECG and posture) achieved the optimal prediction (i.e., mean RMSE of 0.717). This study demonstrates the feasibility of modeling and predicting the flow experience in video learning by combining multimodal data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
16秒前
37秒前
49秒前
科研通AI6应助科研通管家采纳,获得10
52秒前
wanci应助john2333采纳,获得10
56秒前
奋斗的小研完成签到,获得积分10
1分钟前
1分钟前
Jin完成签到,获得积分10
1分钟前
jin完成签到,获得积分10
1分钟前
1分钟前
aming发布了新的文献求助10
1分钟前
john2333关注了科研通微信公众号
1分钟前
2分钟前
melody完成签到 ,获得积分10
2分钟前
john2333发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
深情安青应助www采纳,获得10
2分钟前
Scheduling完成签到 ,获得积分10
2分钟前
bigtree完成签到 ,获得积分10
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
开心惜梦完成签到,获得积分10
3分钟前
yan完成签到,获得积分10
3分钟前
3分钟前
华仔应助圈圈采纳,获得10
3分钟前
3分钟前
CC完成签到,获得积分10
3分钟前
CC发布了新的文献求助10
3分钟前
4分钟前
溯溯完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
4分钟前
ccc完成签到 ,获得积分10
4分钟前
5分钟前
www发布了新的文献求助10
5分钟前
郭强完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304