亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Understanding Flow Experience in Video Learning by Multimodal Data

人工智能 无聊 模式 计算机科学 机器学习 多任务学习 多层感知器 均方误差 语音识别 模式识别(心理学) 人工神经网络 任务(项目管理) 统计 心理学 数学 社会心理学 社会学 经济 社会科学 管理
作者
Yankai Wang,Bing Chen,Hongyan Liu,Zhiguo Hu
出处
期刊:International Journal of Human-computer Interaction [Taylor & Francis]
卷期号:40 (12): 3144-3158 被引量:4
标识
DOI:10.1080/10447318.2023.2181878
摘要

Video-based learning has successfully become an effective alternative to face-to-face instruction. In such situations, modeling or predicting learners' flow experience during video learning is critical for enhancing the learning experience and advancing learning technologies. In this study, we set up an instructional scenario for video learning according to flow theory. Different learning states, i.e., boredom, fit (flow), and anxiety, were successfully induced by varying the difficulty levels of the learning task. We collected learners' electrocardiogram (ECG) signals as well as facial video, upper body posture and speech data during the learning process. We proposed classification models of the learning state and regression models to predict flow experience by utilizing different combinations of the data from the four modalities. The results showed that the model performance of learning state recognition was significantly improved by the decision-level fusion of multimodal data. By using the selected important features from all data sources, such as the standard deviation of normal to normal R-R intervals (SDNN), high-frequency (HF) heart rate variability and mel-frequency cepstral coefficients (MFCC), the multilayer perceptron (MLP) classifier gave the best recognition result of learning states (i.e., mean AUC of 0.780). The recognition accuracy of boredom, fit (flow) and anxiety reached 47.48%, 80.89% and 47.41%, respectively. For flow experience prediction, the MLP regressor based on the fusion of two modalities (i.e., ECG and posture) achieved the optimal prediction (i.e., mean RMSE of 0.717). This study demonstrates the feasibility of modeling and predicting the flow experience in video learning by combining multimodal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
JamesPei应助Fung采纳,获得10
29秒前
38秒前
心肝宝贝甜蜜饯完成签到,获得积分10
54秒前
1分钟前
qiu发布了新的文献求助10
1分钟前
顾矜应助狂发文章采纳,获得10
1分钟前
1分钟前
Djnsbj发布了新的文献求助10
1分钟前
1分钟前
狂发文章发布了新的文献求助10
1分钟前
1分钟前
寒冷苗条应助Djnsbj采纳,获得10
1分钟前
小蘑菇应助Djnsbj采纳,获得10
1分钟前
狂发文章完成签到,获得积分10
1分钟前
1分钟前
1分钟前
duxiao发布了新的文献求助10
1分钟前
hongtao发布了新的文献求助10
1分钟前
1分钟前
Mandy发布了新的文献求助10
2分钟前
我好想睡完成签到,获得积分10
2分钟前
Iron_five完成签到 ,获得积分10
2分钟前
小二郎应助Mandy采纳,获得10
2分钟前
hongtao发布了新的文献求助10
2分钟前
多情的尔安完成签到,获得积分10
2分钟前
3分钟前
宝贝完成签到 ,获得积分10
3分钟前
hongtao发布了新的文献求助10
3分钟前
3分钟前
3分钟前
凯旋预言完成签到 ,获得积分10
3分钟前
Djnsbj发布了新的文献求助10
3分钟前
3分钟前
花陵完成签到 ,获得积分10
3分钟前
4分钟前
共享精神应助Djnsbj采纳,获得10
4分钟前
隐形曼青应助556采纳,获得10
4分钟前
李健的小迷弟应助556采纳,获得10
4分钟前
ShiYanYang完成签到,获得积分10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155648
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214