Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer

医学 无线电技术 宫颈癌 淋巴结 放射科 放化疗 磁共振成像 逻辑回归 核医学 癌症 放射治疗 内科学
作者
François Lucia,Vincent Bourbonne,Clémence Pleyers,Pierre‐François Dupré,O. Miranda,Dimitris Visvikis,Olivier Pradier,Ronan Abgral,A. Mervoyer,Jean-Marc Classe,Caroline Rousseau,Wim Vos,Johanne Hermesse,Christine Gennigens,Marjolein De Cuypere,Frédéric Kridelka,Ulrike Schick,Mathieu Hatt,Roland Hustinx,Pierre Lovinfosse
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:50 (8): 2514-2528 被引量:20
标识
DOI:10.1007/s00259-023-06180-w
摘要

To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using 18F-FDG PET/CT and MRI radiomics combined with clinical parameters. We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital 18F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. Radiomic features extracted from pre-CRT analog and digital 18F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zm发布了新的文献求助10
刚刚
吴鹏完成签到,获得积分10
1秒前
1秒前
ffddsdc发布了新的文献求助10
1秒前
1秒前
怡然缘分发布了新的文献求助10
2秒前
王昊雨发布了新的文献求助10
2秒前
美好的糖豆完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
开花发布了新的文献求助10
2秒前
3秒前
沉默的倔驴应助芯随风静采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
铁甲小杨发布了新的文献求助10
7秒前
陈隆发布了新的文献求助10
7秒前
BowieHuang应助贺贺吖采纳,获得10
8秒前
zhang发布了新的文献求助20
8秒前
江阳宏发布了新的文献求助10
8秒前
斯茵发布了新的文献求助10
9秒前
9秒前
9秒前
科目三应助Oshur采纳,获得10
9秒前
天选牛马人完成签到,获得积分10
10秒前
11秒前
容平完成签到,获得积分10
11秒前
Jasper应助仙女爷爷采纳,获得10
11秒前
要减肥的天奇完成签到,获得积分20
11秒前
12秒前
13秒前
13秒前
冰激凌UP完成签到,获得积分10
14秒前
zm发布了新的文献求助20
14秒前
无风发布了新的文献求助10
14秒前
ykkang发布了新的文献求助10
15秒前
15秒前
沉默的倔驴应助bin采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761878
求助须知:如何正确求助?哪些是违规求助? 5532710
关于积分的说明 15401214
捐赠科研通 4898111
什么是DOI,文献DOI怎么找? 2634724
邀请新用户注册赠送积分活动 1582875
关于科研通互助平台的介绍 1538103