Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer

医学 无线电技术 宫颈癌 淋巴结 放射科 放化疗 磁共振成像 逻辑回归 核医学 癌症 放射治疗 内科学
作者
François Lucia,Vincent Bourbonne,Clémence Pleyers,Pierre‐François Dupré,O. Miranda,Dimitris Visvikis,Olivier Pradier,Ronan Abgral,A. Mervoyer,Jean-Marc Classe,Caroline Rousseau,Wim Vos,Johanne Hermesse,Christine Gennigens,Marjolein De Cuypere,Frédéric Kridelka,Ulrike Schick,Mathieu Hatt,Roland Hustinx,Pierre Lovinfosse
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:50 (8): 2514-2528 被引量:20
标识
DOI:10.1007/s00259-023-06180-w
摘要

To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using 18F-FDG PET/CT and MRI radiomics combined with clinical parameters. We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital 18F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. Radiomic features extracted from pre-CRT analog and digital 18F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
司空悒完成签到,获得积分0
1秒前
1秒前
22222发布了新的文献求助10
2秒前
美好斓发布了新的文献求助10
2秒前
柚子发布了新的文献求助10
4秒前
口味虾发布了新的文献求助10
4秒前
小刘发布了新的文献求助10
4秒前
任性映秋发布了新的文献求助10
4秒前
6秒前
粥游天下完成签到,获得积分10
6秒前
科研通AI6应助优美的雁丝采纳,获得10
7秒前
hhh发布了新的文献求助10
7秒前
8秒前
8秒前
700w完成签到 ,获得积分0
8秒前
小磊子完成签到,获得积分10
9秒前
荆月竹完成签到,获得积分10
10秒前
ljloveljj关注了科研通微信公众号
11秒前
钢笔发布了新的文献求助10
11秒前
sevenseven完成签到,获得积分10
11秒前
Orange应助小刘采纳,获得10
11秒前
传奇3应助luckyhan采纳,获得10
12秒前
笑点低的语蕊完成签到,获得积分20
12秒前
N1发布了新的文献求助10
13秒前
13秒前
Anima应助物理陈老师采纳,获得10
14秒前
科目三应助平淡映易采纳,获得10
14秒前
完美世界应助果粒程采纳,获得10
14秒前
15秒前
霸气的香菇完成签到 ,获得积分10
16秒前
紫色奶萨完成签到,获得积分10
17秒前
17秒前
tree发布了新的文献求助10
18秒前
所所应助任性映秋采纳,获得10
18秒前
woodwood完成签到,获得积分10
18秒前
游标卡尺完成签到,获得积分10
19秒前
欣喜的秋莲完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289641
求助须知:如何正确求助?哪些是违规求助? 4441165
关于积分的说明 13826825
捐赠科研通 4323621
什么是DOI,文献DOI怎么找? 2373243
邀请新用户注册赠送积分活动 1368665
关于科研通互助平台的介绍 1332557