医学
无线电技术
宫颈癌
淋巴结
放射科
放化疗
磁共振成像
逻辑回归
核医学
癌症
放射治疗
内科学
作者
François Lucia,Vincent Bourbonne,Clémence Pleyers,Pierre‐François Dupré,O. Miranda,Dimitris Visvikis,Olivier Pradier,Ronan Abgral,A. Mervoyer,Jean-Marc Classe,Caroline Rousseau,Wim Vos,Johanne Hermesse,Christine Gennigens,Marjolein De Cuypere,Frédéric Kridelka,Ulrike Schick,Mathieu Hatt,Roland Hustinx,Pierre Lovinfosse
标识
DOI:10.1007/s00259-023-06180-w
摘要
To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using 18F-FDG PET/CT and MRI radiomics combined with clinical parameters. We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital 18F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. Radiomic features extracted from pre-CRT analog and digital 18F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.
科研通智能强力驱动
Strongly Powered by AbleSci AI