Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer

医学 无线电技术 宫颈癌 淋巴结 放射科 放化疗 磁共振成像 逻辑回归 核医学 癌症 放射治疗 内科学
作者
François Lucia,Vincent Bourbonne,Clémence Pleyers,Pierre‐François Dupré,O. Miranda,Dimitris Visvikis,Olivier Pradier,Ronan Abgral,A. Mervoyer,Jean-Marc Classe,Caroline Rousseau,Wim Vos,Johanne Hermesse,Christine Gennigens,Marjolein De Cuypere,Frédéric Kridelka,Ulrike Schick,Mathieu Hatt,Roland Hustinx,Pierre Lovinfosse
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:50 (8): 2514-2528 被引量:18
标识
DOI:10.1007/s00259-023-06180-w
摘要

To develop machine learning models to predict para-aortic lymph node (PALN) involvement in patients with locally advanced cervical cancer (LACC) before chemoradiotherapy (CRT) using 18F-FDG PET/CT and MRI radiomics combined with clinical parameters. We retrospectively collected 178 patients (60% for training and 40% for testing) in 2 centers and 61 patients corresponding to 2 further external testing cohorts with LACC between 2010 to 2022 and who had undergone pretreatment analog or digital 18F-FDG PET/CT, pelvic MRI and surgical PALN staging. Only primary tumor volumes were delineated. Radiomics features were extracted using the Radiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. Different prediction models were trained using a neural network approach with either clinical, radiomics or combined models. They were then evaluated on the testing and external validation sets and compared. In the training set (n = 102), the clinical model achieved a good prediction of the risk of PALN involvement with a C-statistic of 0.80 (95% CI 0.71, 0.87). However, it performed in the testing (n = 76) and external testing sets (n = 30 and n = 31) with C-statistics of only 0.57 to 0.67 (95% CI 0.36, 0.83). The ComBat-radiomic (GLDZM_HISDE_PET_FBN64 and Shape_maxDiameter2D3_PET_FBW0.25) and ComBat-combined (FIGO 2018 and same radiomics features) models achieved very high predictive ability in the training set and both models kept the same performance in the testing sets, with C-statistics from 0.88 to 0.96 (95% CI 0.76, 1.00) and 0.85 to 0.92 (95% CI 0.75, 0.99), respectively. Radiomic features extracted from pre-CRT analog and digital 18F-FDG PET/CT outperform clinical parameters in the decision to perform a para-aortic node staging or an extended field irradiation to PALN. Prospective validation of our models should now be carried out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心市民小红花应助丢丢采纳,获得10
3秒前
grumpysquirel完成签到,获得积分10
3秒前
啦啦啦发布了新的文献求助10
3秒前
3秒前
道友且慢发布了新的文献求助20
4秒前
天竹子发布了新的文献求助10
4秒前
Longfenzhong完成签到,获得积分10
5秒前
江维维豆奶完成签到 ,获得积分10
7秒前
菜鸟完成签到,获得积分10
8秒前
孳孳为善6387完成签到,获得积分10
9秒前
酷波er应助庾稀采纳,获得10
9秒前
jihenyouai0213完成签到,获得积分10
10秒前
朴实山兰完成签到,获得积分10
12秒前
小蘑菇应助YZF采纳,获得10
15秒前
蓝天白云发布了新的文献求助10
15秒前
自然的士晋完成签到,获得积分20
17秒前
狸狸完成签到,获得积分20
19秒前
JamesPei应助吃猫的鱼采纳,获得10
19秒前
bxyyy应助虚幻龙猫采纳,获得10
21秒前
22秒前
Akim应助天竹子采纳,获得10
23秒前
包容秋荷发布了新的文献求助10
24秒前
无花果应助LUK_采纳,获得10
25秒前
慕青应助Bella采纳,获得30
25秒前
26秒前
科研小学生完成签到,获得积分10
26秒前
肚皮完成签到 ,获得积分10
27秒前
吭哧吭哧完成签到,获得积分10
28秒前
<小天才>完成签到,获得积分10
28秒前
天天快乐应助YZF采纳,获得10
28秒前
菜鸟关注了科研通微信公众号
28秒前
29秒前
30秒前
30秒前
潇湘夜雨关注了科研通微信公众号
32秒前
超超的仔仔月完成签到,获得积分10
32秒前
32秒前
tmobiusx发布了新的文献求助10
33秒前
556发布了新的文献求助10
34秒前
科研顺利完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019