Short-term PV power forecast methodology based on multi-scale fluctuation characteristics extraction

光伏系统 比例(比率) 期限(时间) 聚类分析 计算机科学 功率(物理) 气象学 环境科学 工程类 人工智能 地理 地图学 量子力学 电气工程 物理
作者
Jiebei Zhu,Mingrui Li,Lin Luo,Bidan Zhang,Mingjian Cui,Lujie Yu
出处
期刊:Renewable Energy [Elsevier]
卷期号:208: 141-151 被引量:11
标识
DOI:10.1016/j.renene.2023.03.029
摘要

The short-term forecast of photovoltaic (PV) power is crucial for the security and economics of power system operations. However, the fluctuation characteristics of the PV power, which are closely related to the meteorological factors, introduce inaccuracies in its forecast. Towards this end, the paper studies the effects of clustering analysis at long time scale and data reconstruction technique at short time scale on capturing PV power fluctuation characteristics. A short-term PV power forecasts method based on multi-scale fluctuation characteristics extraction (MFCE), which employs a path analysis to identify the relevance of meteorological factors with PV power at long time scale and a phase space reconstruction to analyze PV power fluctuation characteristics at short time scale, is proposed in this paper. The proposed MFCE methodology deploys a widely-used extreme gradient boosting (XGBoost) model to output the forecasting results. Both the effectiveness and accuracy of the proposed methodology are verified by using the real data under the conditions of sunny and cloudy days of four seasons compared to traditional methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Isabel采纳,获得10
刚刚
gezid完成签到 ,获得积分10
刚刚
1秒前
1秒前
niu1发布了新的文献求助10
1秒前
Intro发布了新的文献求助10
1秒前
舒服的冬天完成签到,获得积分10
2秒前
Helical给Helical的求助进行了留言
2秒前
甜蜜晓绿完成签到,获得积分10
2秒前
3秒前
钱多多完成签到,获得积分10
3秒前
baekhyun完成签到,获得积分20
3秒前
3秒前
dpp发布了新的文献求助10
3秒前
今今完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
打打应助无情的白桃采纳,获得10
5秒前
香蕉觅云应助与光同晨采纳,获得10
6秒前
6秒前
小蘑菇应助clm采纳,获得10
6秒前
yhnsag完成签到,获得积分10
6秒前
Lin完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
Rain发布了新的文献求助10
8秒前
butiflow完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
务实的唇膏完成签到,获得积分10
9秒前
Will完成签到,获得积分10
9秒前
9秒前
Micky完成签到,获得积分10
9秒前
ape发布了新的文献求助10
9秒前
十七发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762