Enhanced Multi-Task Learning and Knowledge Graph-Based Recommender System

计算机科学 推荐系统 任务(项目管理) 图形 关系(数据库) 人工智能 嵌入 情报检索 机器学习 理论计算机科学 数据挖掘 经济 管理
作者
Min Gao,Jian-Yu Li,Chunhua Chen,Yun Li,Jun Zhang,Zhi‐Hui Zhan
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 10281-10294 被引量:30
标识
DOI:10.1109/tkde.2023.3251897
摘要

In recent years, the m ulti-task learning for k nowledge graph-based r ecommender system, termed MKR, has shown its promising performance and has attracted increasing interest, because a recommendation task and a knowledge graph embedding (KGE) task can help each other to improve the recommendation. However, MKR still has two difficult issues. The first is how fully to capture users' historical behavior pattern in the recommendation task and how fully to utilize deep multi-relation semantic information in the KGE task. The second is how to deal with datasets with different sparsity. Tackling these challenging issues, this paper proposes an enhanced MKR (EMKR) approach with two novelties. First, we propose to utilize the attention mechanism to aggregate users' historical behavior for more accurately mining preferences in the recommendation task, and utilize the relation-aware graph convolutional neural network to fully capture the deep multi-relation neighborhood features in the KGE task, so as to address the first issue. Second, a two-part modeling strategy is proposed for a better representation of users in the recommendation task to expand the expressive ability of the model for adapting to datasets with different sparsity, so as to address the second issue. Extensive experiments are conducted on widely-used datasets and 11 approaches are used for comparison. The results show that the proposed EMKR can achieve substantial gains over the compared state-of-the-art approaches, especially in the situation where user-item interactions are sparse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿泗完成签到,获得积分10
刚刚
在水一方发布了新的文献求助10
1秒前
柒柒完成签到,获得积分10
1秒前
chaser完成签到,获得积分10
1秒前
糊涂的胡发布了新的文献求助30
1秒前
Iris关注了科研通微信公众号
1秒前
盛yyyy完成签到 ,获得积分10
1秒前
1秒前
王文睿完成签到,获得积分10
2秒前
2秒前
2秒前
嘴嘴发布了新的文献求助10
3秒前
3秒前
hiten发布了新的文献求助10
3秒前
科目三应助折耳Doc采纳,获得30
3秒前
酷炫依凝发布了新的文献求助10
3秒前
追寻幻翠发布了新的文献求助10
4秒前
儒雅的菠萝吹雪完成签到,获得积分10
4秒前
4秒前
在水一方应助赧赧采纳,获得10
4秒前
香蕉觅云应助纪元龙采纳,获得50
5秒前
5秒前
6秒前
6秒前
脑洞疼应助朴实凡柔采纳,获得10
7秒前
无语jian完成签到 ,获得积分10
8秒前
六子发布了新的文献求助10
9秒前
9秒前
memory发布了新的文献求助20
10秒前
Hello应助ddffgz采纳,获得10
10秒前
乘数完成签到,获得积分10
10秒前
jiuyang完成签到,获得积分10
11秒前
11秒前
喵了个咪发布了新的文献求助10
11秒前
12秒前
求助NE完成签到 ,获得积分10
12秒前
why发布了新的文献求助10
13秒前
Jayya完成签到 ,获得积分10
13秒前
Murphy完成签到,获得积分10
13秒前
qmx完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663