CFAGO: cross-fusion of network and attributes based on attention mechanism for protein function prediction

计算机科学 蛋白质功能预测 平滑的 水准点(测量) 人工智能 蛋白质功能 功能(生物学) 机制(生物学) 代表(政治) 机器学习 注释 生物 生物化学 哲学 大地测量学 认识论 进化生物学 政治 基因 政治学 法学 计算机视觉 地理
作者
Zhourun Wu,Mingyue Guo,Xiaopeng Jin,Junjie Chen,Bin Liu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (3) 被引量:16
标识
DOI:10.1093/bioinformatics/btad123
摘要

Abstract Motivation Protein function annotation is fundamental to understanding biological mechanisms. The abundant genome-scale protein–protein interaction (PPI) networks, together with other protein biological attributes, provide rich information for annotating protein functions. As PPI networks and biological attributes describe protein functions from different perspectives, it is highly challenging to cross-fuse them for protein function prediction. Recently, several methods combine the PPI networks and protein attributes via the graph neural networks (GNNs). However, GNNs may inherit or even magnify the bias caused by noisy edges in PPI networks. Besides, GNNs with stacking of many layers may cause the over-smoothing problem of node representations. Results We develop a novel protein function prediction method, CFAGO, to integrate single-species PPI networks and protein biological attributes via a multi-head attention mechanism. CFAGO is first pre-trained with an encoder–decoder architecture to capture the universal protein representation of the two sources. It is then fine-tuned to learn more effective protein representations for protein function prediction. Benchmark experiments on human and mouse datasets show CFAGO outperforms state-of-the-art single-species network-based methods by at least 7.59%, 6.90%, 11.68% in terms of m-AUPR, M-AUPR, and Fmax, respectively, demonstrating cross-fusion by multi-head attention mechanism can greatly improve the protein function prediction. We further evaluate the quality of captured protein representations in terms of Davies Bouldin Score, whose results show that cross-fused protein representations by multi-head attention mechanism are at least 2.7% better than that of original and concatenated representations. We believe CFAGO is an effective tool for protein function prediction. Availability and implementation The source code of CFAGO and experiments data are available at: http://bliulab.net/CFAGO/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张雯雯发布了新的文献求助10
2秒前
zsy完成签到,获得积分20
2秒前
DWQ关注了科研通微信公众号
2秒前
K513693050发布了新的文献求助10
2秒前
3秒前
烟花应助淡然向松采纳,获得10
3秒前
4秒前
可爱的你完成签到,获得积分10
4秒前
青南发布了新的文献求助10
4秒前
XYZ完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
6666发布了新的文献求助10
7秒前
科研通AI2S应助安乐瑶采纳,获得10
7秒前
舒适亦凝发布了新的文献求助10
7秒前
顾矜应助碗碗采纳,获得10
7秒前
7秒前
7秒前
13841881385完成签到,获得积分10
8秒前
勤奋荔枝发布了新的文献求助10
8秒前
ding应助nater2ver采纳,获得10
8秒前
DQ发布了新的文献求助10
9秒前
研友-wbg-LjbQIL完成签到 ,获得积分10
9秒前
9秒前
9秒前
襄阳完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
天天快乐应助xxh采纳,获得10
12秒前
上善若水完成签到 ,获得积分10
12秒前
MchemG应助Dwan采纳,获得30
13秒前
60111发布了新的文献求助10
14秒前
LeiYe完成签到,获得积分10
14秒前
K513693050完成签到,获得积分20
15秒前
15秒前
慕青应助小程同学采纳,获得10
16秒前
义气尔安发布了新的文献求助10
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470653
求助须知:如何正确求助?哪些是违规求助? 3063626
关于积分的说明 9084762
捐赠科研通 2754142
什么是DOI,文献DOI怎么找? 1511256
邀请新用户注册赠送积分活动 698359
科研通“疑难数据库(出版商)”最低求助积分说明 698253