纳米传感器
材料科学
荧光
吞吐量
纳米技术
计算机科学
光学
电信
物理
无线
作者
Justus T. Metternich,Sujit K. Patjoshi,Tanuja Kistwal,Sebastian Kruss
标识
DOI:10.1002/adma.202411067
摘要
Abstract Optical sensors are powerful tools to identify and image (biological) molecules. Because of their optoelectronic properties, nanomaterials are often used as building blocks. To transduce the chemical interaction with the analyte into an optical signal, the interplay between surface chemistry and nanomaterial photophysics has to be optimized. Understanding these aspects promises major opportunities for tailored sensors with optimal performance. However, this requires methods to create and explore the many chemical permutations. Indeed, many current approaches are limited in throughput. This affects the chemical design space that can be studied, the application of machine learning approaches as well as fundamental mechanistic understanding. Here, an overview of selection‐limited and synthesis‐limited approaches is provided to create and identify molecular nanosensors. Bottlenecks are discussed and opportunities of non‐classical recognition strategies are highlighted such as corona phase molecular recognition as well as the requirements for high throughput and scalability. Fluorescent carbon nanotubes are powerful building blocks for sensors and their huge chemical design space makes them an ideal platform for high throughput approaches. Therefore, they are the focus of this article, but the insights are transferable to any nanosensor system. Overall, this perspective aims to provide a fresh perspective to overcome current challenges in the nanosensor field.
科研通智能强力驱动
Strongly Powered by AbleSci AI