Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. Here, we identified MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC. MTHFD2 was elevated in sunitinib resistant RCC cells, and loss of MTHDF2 conferred sensitivity to sunitinib. In patients, MTHFD2 was highly expressed in RCC and was associated with poor outcomes. Mechanistically, MTHFD2 stimulated UDP-GlcNAc biosynthesis and promoted cMYC O-GlcNAcylation by driving the folate cycle. O-GlcNAcylation enhanced cMYC stability and promoted MTHFD2 and CCND1 transcription. Targeting MTHFD2 or cyclin D1 sensitized tumor cells to sunitinib in vitro and in vivo. Consistently, development of a peptide drug capable of efficiently degrading MTHFD2 enabled reversal of sunitinib resistance in RCC. These findings identify a noncanonical metabolic function of MTHFD2 in cell signaling and response to therapy and reveal the interplay between one-carbon metabolism and sunitinib resistance in RCC. Targeting MTHFD2 could be an effective approach to overcome sunitinib resistance.