Generative AI and Large Language Model Assisted Causal Discovery and Inference for Driving Process Improvements

计算机科学 生成语法 过程(计算) 推论 人工智能 自然语言处理 机器学习 生成模型 语言模型 因果推理 程序设计语言 计量经济学 数学
作者
Partab Rai,Ankit Kumar Jain,Avishek Anand
标识
DOI:10.2118/221872-ms
摘要

Data-driven process management coupled with machine learning have been successful in driving commercial value to oil and gas operators by offering insights into process disruptions and their root causes. One frequently used approach is to analyze causes of process disruptions exclusively from historical data. In general, specific insights in the form of high correlation between certain process performance indicators and a well-defined measure of production inefficiency is often confounded as responsible causal factors. While this may yield some insights, the complexity of processes, measured in terms of number of entities involved and their interrelationships, requires a more nuanced approach that must include the context of the specific process. Thus, data analysis must be augmented with significant inputs from experts. Causal Inference provides a conceptual framework and tools for doing such analysis. In causal analysis, we embed this specific knowledge of subject matter experts using causal graphs consisting of process features (nodes) and their dependency (directed edges). For complex processes however, constructing causal graphs could be non-trivial due to ambiguity over which nodes to include and the plausible direction of their relationships. With the advent of foundational Large Language Models (LLM), there is an opportunity to mitigate this problem by utilizing the enormous information it encodes. Tools and technologies now exist to customize the response of LLM using retrieval of information from a corpus of specific high-quality knowledge in the form of related literature and data. It can therefore be used to assist the domain expert in building and finetuning the causal graph, and in simpler cases, can completely automate this step. In this work, we propose a two-step approach to combine the power of LLMs and Causal Analysis for analyzing inefficiencies in production processes. In the first step, we implement a Retrieval Augmented Generation (RAG) enhanced LLM prompting on a curated dataset designed to answer specific questions on relationship between process performance indicators. The outcome of this step is a directed acyclic graph encoding dependency of process performance indicators. Domain experts can validate or potentially refine the LLM-generated causal graph based on their domain knowledge for eliminating spurious hallucinations. In the second step, we use an appropriate causal inference method on the refined causal diagram and historical production data to estimate the causal effect of process variable contributing to disruptions or inefficiencies. Thus, by combining human expertise with machine learning, this framework offers a comprehensive approach for optimizing production processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kk完成签到,获得积分10
1秒前
3秒前
3秒前
清脆水卉完成签到,获得积分10
3秒前
4秒前
科研通AI6应助无所谓的啦采纳,获得10
4秒前
CipherSage应助无所谓的啦采纳,获得10
4秒前
爆米花应助无所谓的啦采纳,获得10
4秒前
斯文败类应助无所谓的啦采纳,获得10
4秒前
充电宝应助无所谓的啦采纳,获得10
4秒前
大个应助无所谓的啦采纳,获得10
4秒前
赘婿应助无所谓的啦采纳,获得10
4秒前
Ava应助无所谓的啦采纳,获得10
4秒前
普通市民完成签到 ,获得积分10
4秒前
科研通AI6应助无所谓的啦采纳,获得10
4秒前
Lucien完成签到,获得积分10
5秒前
陈小瑜完成签到,获得积分10
6秒前
Maykl发布了新的文献求助10
6秒前
8秒前
8秒前
Mandy完成签到 ,获得积分10
8秒前
慢慢人发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
爆米花应助liu采纳,获得10
9秒前
Zz发布了新的文献求助10
9秒前
y1j完成签到,获得积分10
10秒前
12秒前
13秒前
14秒前
大个应助Zz采纳,获得10
15秒前
15秒前
123完成签到 ,获得积分10
16秒前
17秒前
遨游的人发布了新的文献求助10
17秒前
禾页完成签到 ,获得积分10
18秒前
19秒前
Yuan发布了新的文献求助10
20秒前
好问题发布了新的文献求助10
20秒前
NexusExplorer应助临江仙采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419649
求助须知:如何正确求助?哪些是违规求助? 4534895
关于积分的说明 14147178
捐赠科研通 4451527
什么是DOI,文献DOI怎么找? 2441782
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410617