亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative AI and Large Language Model Assisted Causal Discovery and Inference for Driving Process Improvements

计算机科学 生成语法 过程(计算) 推论 人工智能 自然语言处理 机器学习 生成模型 语言模型 因果推理 程序设计语言 计量经济学 数学
作者
Partab Rai,Ankit Kumar Jain,Avishek Anand
标识
DOI:10.2118/221872-ms
摘要

Data-driven process management coupled with machine learning have been successful in driving commercial value to oil and gas operators by offering insights into process disruptions and their root causes. One frequently used approach is to analyze causes of process disruptions exclusively from historical data. In general, specific insights in the form of high correlation between certain process performance indicators and a well-defined measure of production inefficiency is often confounded as responsible causal factors. While this may yield some insights, the complexity of processes, measured in terms of number of entities involved and their interrelationships, requires a more nuanced approach that must include the context of the specific process. Thus, data analysis must be augmented with significant inputs from experts. Causal Inference provides a conceptual framework and tools for doing such analysis. In causal analysis, we embed this specific knowledge of subject matter experts using causal graphs consisting of process features (nodes) and their dependency (directed edges). For complex processes however, constructing causal graphs could be non-trivial due to ambiguity over which nodes to include and the plausible direction of their relationships. With the advent of foundational Large Language Models (LLM), there is an opportunity to mitigate this problem by utilizing the enormous information it encodes. Tools and technologies now exist to customize the response of LLM using retrieval of information from a corpus of specific high-quality knowledge in the form of related literature and data. It can therefore be used to assist the domain expert in building and finetuning the causal graph, and in simpler cases, can completely automate this step. In this work, we propose a two-step approach to combine the power of LLMs and Causal Analysis for analyzing inefficiencies in production processes. In the first step, we implement a Retrieval Augmented Generation (RAG) enhanced LLM prompting on a curated dataset designed to answer specific questions on relationship between process performance indicators. The outcome of this step is a directed acyclic graph encoding dependency of process performance indicators. Domain experts can validate or potentially refine the LLM-generated causal graph based on their domain knowledge for eliminating spurious hallucinations. In the second step, we use an appropriate causal inference method on the refined causal diagram and historical production data to estimate the causal effect of process variable contributing to disruptions or inefficiencies. Thus, by combining human expertise with machine learning, this framework offers a comprehensive approach for optimizing production processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧阳枫完成签到 ,获得积分10
6秒前
15秒前
38秒前
40秒前
Weiming发布了新的文献求助10
46秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
kk发布了新的文献求助10
2分钟前
2分钟前
2分钟前
apollo3232完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
studystudy完成签到,获得积分10
3分钟前
3分钟前
冷静初彤完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
张啊应助科研通管家采纳,获得10
5分钟前
5分钟前
小狗发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
儒雅龙完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128683
捐赠科研通 3238299
什么是DOI,文献DOI怎么找? 1789688
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069