Generative AI and Large Language Model Assisted Causal Discovery and Inference for Driving Process Improvements

计算机科学 生成语法 过程(计算) 推论 人工智能 自然语言处理 机器学习 生成模型 语言模型 因果推理 程序设计语言 计量经济学 数学
作者
Partab Rai,Ankit Kumar Jain,Avishek Anand
标识
DOI:10.2118/221872-ms
摘要

Data-driven process management coupled with machine learning have been successful in driving commercial value to oil and gas operators by offering insights into process disruptions and their root causes. One frequently used approach is to analyze causes of process disruptions exclusively from historical data. In general, specific insights in the form of high correlation between certain process performance indicators and a well-defined measure of production inefficiency is often confounded as responsible causal factors. While this may yield some insights, the complexity of processes, measured in terms of number of entities involved and their interrelationships, requires a more nuanced approach that must include the context of the specific process. Thus, data analysis must be augmented with significant inputs from experts. Causal Inference provides a conceptual framework and tools for doing such analysis. In causal analysis, we embed this specific knowledge of subject matter experts using causal graphs consisting of process features (nodes) and their dependency (directed edges). For complex processes however, constructing causal graphs could be non-trivial due to ambiguity over which nodes to include and the plausible direction of their relationships. With the advent of foundational Large Language Models (LLM), there is an opportunity to mitigate this problem by utilizing the enormous information it encodes. Tools and technologies now exist to customize the response of LLM using retrieval of information from a corpus of specific high-quality knowledge in the form of related literature and data. It can therefore be used to assist the domain expert in building and finetuning the causal graph, and in simpler cases, can completely automate this step. In this work, we propose a two-step approach to combine the power of LLMs and Causal Analysis for analyzing inefficiencies in production processes. In the first step, we implement a Retrieval Augmented Generation (RAG) enhanced LLM prompting on a curated dataset designed to answer specific questions on relationship between process performance indicators. The outcome of this step is a directed acyclic graph encoding dependency of process performance indicators. Domain experts can validate or potentially refine the LLM-generated causal graph based on their domain knowledge for eliminating spurious hallucinations. In the second step, we use an appropriate causal inference method on the refined causal diagram and historical production data to estimate the causal effect of process variable contributing to disruptions or inefficiencies. Thus, by combining human expertise with machine learning, this framework offers a comprehensive approach for optimizing production processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的睫毛膏完成签到,获得积分10
1秒前
星辰大海应助All采纳,获得10
1秒前
Binggui完成签到,获得积分10
2秒前
Ayuyu发布了新的文献求助10
2秒前
2秒前
苏卿应助LSS采纳,获得10
2秒前
呐钠发布了新的文献求助10
3秒前
a啊哈哈哈完成签到,获得积分10
3秒前
昨夜星辰昨夜风关注了科研通微信公众号
4秒前
4秒前
哒哒哒宰完成签到,获得积分10
4秒前
buder发布了新的文献求助10
5秒前
哈哈哈完成签到,获得积分10
5秒前
踏实的不愁完成签到,获得积分10
6秒前
7秒前
8秒前
自由涔发布了新的文献求助10
8秒前
9秒前
Lucky应助渣渣XM采纳,获得10
9秒前
满意的柏柳完成签到,获得积分10
10秒前
Ricardo完成签到 ,获得积分10
11秒前
予书完成签到,获得积分10
11秒前
秋子骞发布了新的文献求助10
11秒前
unique完成签到,获得积分10
12秒前
海潮发布了新的文献求助10
13秒前
任娜发布了新的文献求助10
13秒前
赘婿应助张豪杰采纳,获得10
13秒前
乐观无心完成签到,获得积分10
13秒前
MingqingFang应助yyyy采纳,获得10
14秒前
All发布了新的文献求助10
15秒前
15秒前
予书发布了新的文献求助30
15秒前
zppppp关注了科研通微信公众号
15秒前
瑞_发布了新的文献求助10
15秒前
17秒前
dong完成签到 ,获得积分10
18秒前
小小小小小绿红完成签到,获得积分10
19秒前
20秒前
西安鱼发布了新的文献求助10
20秒前
小李完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012