ID-YOLO: A Multi-Module Optimized Algorithm for Insulator Defect Detection in Power Transmission Lines

电力传输 计算机科学 特征提取 传输(电信) 算法 传感器融合 实时计算 人工智能 工程类 电信 电气工程
作者
Qiang Zhang,Jianing Zhang,Ying Li,Changfei Zhu,Guifang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tim.2025.3527530
摘要

Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization of insulator defects are of paramount importance. Considering the inadequacy of the YOLO series of algorithms in extracting features of insulators and their defects in complex backgrounds, we have designed a method called Insulator Defect-YOLO (ID-YOLO) to address this challenge. First, we develop the Global Convolution (GConv) module to integrate spatial and channel information, thereby enhancing the effectiveness of feature extraction. Second, we built the C3-Global Pooling Fusion (C3-GPF) module, aimed at strengthening focus on key data during the feature extraction and fusion stages. Third, we develop the Multi-Scale Information Fusion (MSIF) module to balance the algorithm's detection accuracy and speed, ensuring superior performance in practical applications. Fourth, we built the Weighted Feature Information Fusion (WFIF) module to further enhance the fusion capability of key information. Finally, we adopt the SCYLLA-IoU (SIoU) loss function to replace the original CIoU, thereby improving the algorithm's localization precision and accelerating convergence speed. Experimental results indicate that ID-YOLO achieves an average precision of 90.9%, representing a 3.3% improvement over the baseline YOLOv5s algorithm. Additionally, ID-YOLO achieves a detection speed of 90 frames per second, meeting the requirements for real-time detection. Practical test results demonstrate that the ID-YOLO algorithm significantly improves detection precision while effectively addressing the challenges associated with multi-object and small-object detection, showcasing its potential application in detecting insulator defects in power transmission lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Nero1145完成签到,获得积分10
2秒前
3秒前
11发布了新的文献求助10
4秒前
张展鹏发布了新的文献求助30
4秒前
十一发布了新的文献求助10
6秒前
杨猫宁完成签到,获得积分10
6秒前
7秒前
ZZDXXX完成签到,获得积分10
7秒前
啾啾发布了新的文献求助10
7秒前
7秒前
amberzyc应助Double采纳,获得10
8秒前
xiaoluo完成签到 ,获得积分10
8秒前
浮游应助典雅又夏采纳,获得10
8秒前
8秒前
胡周瑜完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
77完成签到,获得积分20
10秒前
火龙果完成签到,获得积分10
11秒前
13秒前
feitian201861发布了新的文献求助10
13秒前
慕青应助11采纳,获得10
13秒前
14秒前
申燕婷完成签到 ,获得积分10
14秒前
深情的秋白完成签到 ,获得积分10
14秒前
无情思卉发布了新的文献求助10
14秒前
舒适的若云完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
CipherSage应助马小花花花儿采纳,获得10
16秒前
16秒前
muziyang完成签到,获得积分10
17秒前
星辰发布了新的文献求助10
17秒前
18秒前
充电宝应助LongSun采纳,获得10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351663
求助须知:如何正确求助?哪些是违规求助? 4484642
关于积分的说明 13959937
捐赠科研通 4384271
什么是DOI,文献DOI怎么找? 2408898
邀请新用户注册赠送积分活动 1401448
关于科研通互助平台的介绍 1374928