ID-YOLO: A Multi-Module Optimized Algorithm for Insulator Defect Detection in Power Transmission Lines

电力传输 计算机科学 特征提取 传输(电信) 算法 传感器融合 实时计算 人工智能 工程类 电信 电气工程
作者
Qiang Zhang,Jianing Zhang,Ying Li,Changfei Zhu,Guifang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tim.2025.3527530
摘要

Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization of insulator defects are of paramount importance. Considering the inadequacy of the YOLO series of algorithms in extracting features of insulators and their defects in complex backgrounds, we have designed a method called Insulator Defect-YOLO (ID-YOLO) to address this challenge. First, we develop the Global Convolution (GConv) module to integrate spatial and channel information, thereby enhancing the effectiveness of feature extraction. Second, we built the C3-Global Pooling Fusion (C3-GPF) module, aimed at strengthening focus on key data during the feature extraction and fusion stages. Third, we develop the Multi-Scale Information Fusion (MSIF) module to balance the algorithm's detection accuracy and speed, ensuring superior performance in practical applications. Fourth, we built the Weighted Feature Information Fusion (WFIF) module to further enhance the fusion capability of key information. Finally, we adopt the SCYLLA-IoU (SIoU) loss function to replace the original CIoU, thereby improving the algorithm's localization precision and accelerating convergence speed. Experimental results indicate that ID-YOLO achieves an average precision of 90.9%, representing a 3.3% improvement over the baseline YOLOv5s algorithm. Additionally, ID-YOLO achieves a detection speed of 90 frames per second, meeting the requirements for real-time detection. Practical test results demonstrate that the ID-YOLO algorithm significantly improves detection precision while effectively addressing the challenges associated with multi-object and small-object detection, showcasing its potential application in detecting insulator defects in power transmission lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
所所应助吴真好采纳,获得10
刚刚
乐观小之应助wogua采纳,获得10
刚刚
隐形曼青应助wogua采纳,获得10
刚刚
1秒前
清脆惜寒应助Wang采纳,获得30
1秒前
标致乐双发布了新的文献求助10
2秒前
Catalina_S应助太阳采纳,获得20
2秒前
华仔应助刘桑桑采纳,获得10
2秒前
3秒前
4秒前
深情安青应助123456采纳,获得10
4秒前
清爽千亦完成签到 ,获得积分10
4秒前
4秒前
周周完成签到 ,获得积分10
5秒前
读书妖精文亭逐完成签到,获得积分10
5秒前
5秒前
管歌发布了新的文献求助10
5秒前
leez完成签到,获得积分10
6秒前
6秒前
7秒前
WTT发布了新的文献求助10
7秒前
7秒前
笑点低的碧琴完成签到,获得积分10
7秒前
7秒前
7秒前
复杂听筠完成签到 ,获得积分10
8秒前
只是个昵称完成签到,获得积分20
8秒前
成就萤完成签到,获得积分10
8秒前
zihaolee完成签到 ,获得积分10
9秒前
9秒前
及禾发布了新的文献求助10
9秒前
WQQ完成签到,获得积分10
10秒前
大胆隶发布了新的文献求助10
10秒前
许子健发布了新的文献求助10
11秒前
MichelleLu发布了新的文献求助10
11秒前
12秒前
fanglin123完成签到,获得积分10
12秒前
Owen应助王哪跑12采纳,获得10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646