亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ID-YOLO: A Multimodule Optimized Algorithm for Insulator Defect Detection in Power Transmission Lines

电力传输 计算机科学 特征提取 传输(电信) 算法 传感器融合 实时计算 人工智能 工程类 电信 电气工程
作者
Qiang Zhang,Jianing Zhang,Ying Li,Changfei Zhu,Guifang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:74: 1-11 被引量:14
标识
DOI:10.1109/tim.2025.3527530
摘要

Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization of insulator defects are of paramount importance. Considering the inadequacy of the YOLO series of algorithms in extracting features of insulators and their defects in complex backgrounds, we have designed a method called Insulator Defect-YOLO (ID-YOLO) to address this challenge. First, we develop the Global Convolution (GConv) module to integrate spatial and channel information, thereby enhancing the effectiveness of feature extraction. Second, we built the C3-Global Pooling Fusion (C3-GPF) module, aimed at strengthening focus on key data during the feature extraction and fusion stages. Third, we develop the Multi-Scale Information Fusion (MSIF) module to balance the algorithm's detection accuracy and speed, ensuring superior performance in practical applications. Fourth, we built the Weighted Feature Information Fusion (WFIF) module to further enhance the fusion capability of key information. Finally, we adopt the SCYLLA-IoU (SIoU) loss function to replace the original CIoU, thereby improving the algorithm's localization precision and accelerating convergence speed. Experimental results indicate that ID-YOLO achieves an average precision of 90.9%, representing a 3.3% improvement over the baseline YOLOv5s algorithm. Additionally, ID-YOLO achieves a detection speed of 90 frames per second, meeting the requirements for real-time detection. Practical test results demonstrate that the ID-YOLO algorithm significantly improves detection precision while effectively addressing the challenges associated with multi-object and small-object detection, showcasing its potential application in detecting insulator defects in power transmission lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
量子星尘发布了新的文献求助10
7秒前
12秒前
13秒前
彭于晏应助罗大壮采纳,获得10
22秒前
直率的笑翠完成签到 ,获得积分10
25秒前
bfs完成签到 ,获得积分10
31秒前
31秒前
罗大壮发布了新的文献求助10
34秒前
37秒前
量子星尘发布了新的文献求助10
37秒前
41秒前
mark163完成签到,获得积分10
41秒前
斯文败类应助科研通管家采纳,获得10
42秒前
42秒前
HANZHANG应助科研通管家采纳,获得10
42秒前
21完成签到 ,获得积分10
1分钟前
Jasper应助找不完采纳,获得10
1分钟前
1分钟前
1分钟前
Criminology34应助ling30采纳,获得10
1分钟前
1分钟前
Freeasy完成签到 ,获得积分10
1分钟前
SciGPT应助krajicek采纳,获得10
1分钟前
x夏天完成签到 ,获得积分10
2分钟前
zoey完成签到,获得积分10
2分钟前
2分钟前
sofardli完成签到,获得积分10
2分钟前
sofardli发布了新的文献求助20
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755340
求助须知:如何正确求助?哪些是违规求助? 5493931
关于积分的说明 15381135
捐赠科研通 4893488
什么是DOI,文献DOI怎么找? 2632142
邀请新用户注册赠送积分活动 1579983
关于科研通互助平台的介绍 1535786