ID-YOLO: A Multi-Module Optimized Algorithm for Insulator Defect Detection in Power Transmission Lines

电力传输 计算机科学 特征提取 传输(电信) 算法 传感器融合 实时计算 人工智能 工程类 电信 电气工程
作者
Qiang Zhang,Jianing Zhang,Ying Li,Changfei Zhu,G.-S. Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2025.3527530
摘要

Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization of insulator defects are of paramount importance. Considering the inadequacy of the YOLO series of algorithms in extracting features of insulators and their defects in complex backgrounds, we have designed a method called Insulator Defect-YOLO (ID-YOLO) to address this challenge. First, we develop the Global Convolution (GConv) module to integrate spatial and channel information, thereby enhancing the effectiveness of feature extraction. Second, we built the C3-Global Pooling Fusion (C3-GPF) module, aimed at strengthening focus on key data during the feature extraction and fusion stages. Third, we develop the Multi-Scale Information Fusion (MSIF) module to balance the algorithm's detection accuracy and speed, ensuring superior performance in practical applications. Fourth, we built the Weighted Feature Information Fusion (WFIF) module to further enhance the fusion capability of key information. Finally, we adopt the SCYLLA-IoU (SIoU) loss function to replace the original CIoU, thereby improving the algorithm's localization precision and accelerating convergence speed. Experimental results indicate that ID-YOLO achieves an average precision of 90.9%, representing a 3.3% improvement over the baseline YOLOv5s algorithm. Additionally, ID-YOLO achieves a detection speed of 90 frames per second, meeting the requirements for real-time detection. Practical test results demonstrate that the ID-YOLO algorithm significantly improves detection precision while effectively addressing the challenges associated with multi-object and small-object detection, showcasing its potential application in detecting insulator defects in power transmission lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Carpe47发布了新的文献求助10
刚刚
曼巴精神发布了新的文献求助10
2秒前
怕黑的班完成签到,获得积分10
2秒前
zoe完成签到 ,获得积分10
2秒前
jy发布了新的文献求助10
3秒前
求知若渴的小王完成签到,获得积分10
3秒前
orixero应助Cxu采纳,获得10
3秒前
guoguo发布了新的文献求助10
3秒前
4秒前
陈晗予完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
搜集达人应助啧啧啧采纳,获得30
6秒前
7秒前
7秒前
7秒前
WM应助aaa采纳,获得10
8秒前
ze发布了新的文献求助10
9秒前
夏子完成签到,获得积分10
9秒前
9秒前
快乐芷珊发布了新的文献求助10
10秒前
斯文败类应助zww采纳,获得10
10秒前
11秒前
12秒前
深情冷雪发布了新的文献求助30
12秒前
12秒前
xionghetu65发布了新的文献求助10
12秒前
zsy发布了新的文献求助10
12秒前
14秒前
14秒前
15秒前
子民发布了新的文献求助10
15秒前
Ava应助玻丽露露采纳,获得10
15秒前
tantan发布了新的文献求助10
15秒前
烟花应助niuya采纳,获得10
17秒前
Star完成签到,获得积分10
17秒前
sheh发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358547
求助须知:如何正确求助?哪些是违规求助? 2981699
关于积分的说明 8700265
捐赠科研通 2663354
什么是DOI,文献DOI怎么找? 1458431
科研通“疑难数据库(出版商)”最低求助积分说明 675112
邀请新用户注册赠送积分活动 666149