亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ID-YOLO: A Multi-Module Optimized Algorithm for Insulator Defect Detection in Power Transmission Lines

电力传输 计算机科学 特征提取 传输(电信) 算法 传感器融合 实时计算 人工智能 工程类 电信 电气工程
作者
Qiang Zhang,Jianing Zhang,Ying Li,Changfei Zhu,Guifang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2025.3527530
摘要

Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization of insulator defects are of paramount importance. Considering the inadequacy of the YOLO series of algorithms in extracting features of insulators and their defects in complex backgrounds, we have designed a method called Insulator Defect-YOLO (ID-YOLO) to address this challenge. First, we develop the Global Convolution (GConv) module to integrate spatial and channel information, thereby enhancing the effectiveness of feature extraction. Second, we built the C3-Global Pooling Fusion (C3-GPF) module, aimed at strengthening focus on key data during the feature extraction and fusion stages. Third, we develop the Multi-Scale Information Fusion (MSIF) module to balance the algorithm's detection accuracy and speed, ensuring superior performance in practical applications. Fourth, we built the Weighted Feature Information Fusion (WFIF) module to further enhance the fusion capability of key information. Finally, we adopt the SCYLLA-IoU (SIoU) loss function to replace the original CIoU, thereby improving the algorithm's localization precision and accelerating convergence speed. Experimental results indicate that ID-YOLO achieves an average precision of 90.9%, representing a 3.3% improvement over the baseline YOLOv5s algorithm. Additionally, ID-YOLO achieves a detection speed of 90 frames per second, meeting the requirements for real-time detection. Practical test results demonstrate that the ID-YOLO algorithm significantly improves detection precision while effectively addressing the challenges associated with multi-object and small-object detection, showcasing its potential application in detecting insulator defects in power transmission lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
吡咯爱成环完成签到,获得积分0
10秒前
litieniu完成签到 ,获得积分10
12秒前
16秒前
心肝宝贝甜蜜饯完成签到,获得积分10
16秒前
吴DrYDYY发布了新的文献求助10
21秒前
21秒前
24秒前
FEI发布了新的文献求助10
24秒前
CipherSage应助发疯的科研采纳,获得10
26秒前
CipherSage应助八合一采纳,获得10
28秒前
强健的迎波完成签到,获得积分10
30秒前
失眠呆呆鱼完成签到 ,获得积分10
31秒前
42秒前
45秒前
45秒前
45秒前
dong应助科研通管家采纳,获得10
46秒前
dong应助科研通管家采纳,获得10
46秒前
八合一发布了新的文献求助10
47秒前
外星人发布了新的文献求助10
50秒前
josephina发布了新的文献求助10
51秒前
CAOHOU给SimonLee的求助进行了留言
54秒前
程宇应助吴DrYDYY采纳,获得20
1分钟前
冷酷完成签到,获得积分10
1分钟前
wanci应助远方采纳,获得10
1分钟前
1分钟前
哈哈哈哈哈哈哈完成签到,获得积分10
1分钟前
oleskarabach完成签到,获得积分20
1分钟前
佛系完成签到 ,获得积分10
1分钟前
李治稳发布了新的文献求助10
1分钟前
子咸发布了新的文献求助10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
程风破浪发布了新的文献求助50
1分钟前
yangl完成签到 ,获得积分10
1分钟前
josephina完成签到,获得积分10
1分钟前
田様应助清脆的绮梅采纳,获得10
1分钟前
查文献的大猫完成签到,获得积分10
1分钟前
1分钟前
sola完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994955
求助须知:如何正确求助?哪些是违规求助? 3535071
关于积分的说明 11267066
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806483
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762