A Intelligent Fault Diagnosis Method Based on Optimized Parallel Convolutional Neural Network

卷积神经网络 计算机科学 断层(地质) 人工神经网络 人工智能 地震学 地质学
作者
Chunhui Li,Youfu Tang,Na Lei,Xu Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/jsen.2025.3525622
摘要

Addressing the limitations in feature extraction and model optimization complexity of convolutional neural network (CNN), a Intelligent fault diagnosis method based on Beluga Optimization algorithm (BWO) optimized parallel convolutional neural network (PCNN) is proposed. Firstly, the preprocessed vibration signal of the rolling bearing is converted into a two-dimensional time-frequency image by continuous wavelet transform (CWT). Secondly, the PCNN model is constructed, wherein the two branches independently learn distinct image weight values. This approach enhances deep space feature expression by complementing high-dimensional features. Then, the BWO algorithm is used to optimize the hyperparameters of PCNN, thereby enhancing the model's feature extraction and classification performance. Finally, multi-head self-attention (MSA) is introduced into PCNN framework to further improve the quality of feature representation and realize fault identification. The effectiveness and superiority of the method are verified by experimental data sets of rolling bearing and field test data sets of reciprocating compressor, the results of which show that the proposed model is significantly superior to the other models, exhibiting higher accuracy and better noise resistance, which can provide reliable technical support for practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
科研通AI6应助小柯采纳,获得10
1秒前
汉堡包应助ccc采纳,获得10
1秒前
2秒前
1226813885发布了新的文献求助10
2秒前
2秒前
yeyeye完成签到,获得积分10
3秒前
张张张xxx完成签到,获得积分10
3秒前
mary611完成签到,获得积分10
3秒前
乌龟娟完成签到,获得积分10
5秒前
默存发布了新的文献求助10
6秒前
Steffi完成签到,获得积分10
6秒前
科研通AI5应助张mingyu123采纳,获得10
6秒前
高高ai发布了新的文献求助10
6秒前
6秒前
6秒前
FashionBoy应助NTw_wzw采纳,获得10
7秒前
剑门侠客应助一点点脸红采纳,获得10
7秒前
domingo发布了新的文献求助30
7秒前
777完成签到,获得积分10
7秒前
鱼不鱼发布了新的文献求助10
7秒前
浮游应助李闻闻采纳,获得10
7秒前
47完成签到,获得积分10
8秒前
HMX完成签到,获得积分10
8秒前
8秒前
隐形曼青应助Fiona采纳,获得30
9秒前
香蕉觅云应助zSmart采纳,获得10
11秒前
英姑应助柔弱翎采纳,获得30
12秒前
12秒前
鱼不鱼完成签到,获得积分10
14秒前
15秒前
彭半梦发布了新的文献求助10
15秒前
env完成签到,获得积分10
16秒前
文艺的曼柔完成签到 ,获得积分10
16秒前
碧蓝的盼夏完成签到,获得积分10
16秒前
单薄茗完成签到,获得积分10
17秒前
17秒前
科研通AI6应助木棉哆哆采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598