A Intelligent Fault Diagnosis Method Based on Optimized Parallel Convolutional Neural Network

卷积神经网络 计算机科学 断层(地质) 人工神经网络 人工智能 地震学 地质学
作者
Chunhui Li,Youfu Tang,Na Lei,Xu Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/jsen.2025.3525622
摘要

Addressing the limitations in feature extraction and model optimization complexity of convolutional neural network (CNN), a Intelligent fault diagnosis method based on Beluga Optimization algorithm (BWO) optimized parallel convolutional neural network (PCNN) is proposed. Firstly, the preprocessed vibration signal of the rolling bearing is converted into a two-dimensional time-frequency image by continuous wavelet transform (CWT). Secondly, the PCNN model is constructed, wherein the two branches independently learn distinct image weight values. This approach enhances deep space feature expression by complementing high-dimensional features. Then, the BWO algorithm is used to optimize the hyperparameters of PCNN, thereby enhancing the model's feature extraction and classification performance. Finally, multi-head self-attention (MSA) is introduced into PCNN framework to further improve the quality of feature representation and realize fault identification. The effectiveness and superiority of the method are verified by experimental data sets of rolling bearing and field test data sets of reciprocating compressor, the results of which show that the proposed model is significantly superior to the other models, exhibiting higher accuracy and better noise resistance, which can provide reliable technical support for practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂图发布了新的文献求助10
1秒前
1秒前
zfcaabbcc发布了新的文献求助10
1秒前
2秒前
体贴的嵩发布了新的文献求助10
2秒前
lllllljmjmjm完成签到,获得积分10
2秒前
喜喜完成签到,获得积分10
3秒前
3秒前
小青椒应助浮浮世世采纳,获得50
3秒前
3秒前
4秒前
科研通AI6应助ned采纳,获得10
5秒前
小马甲应助通~采纳,获得30
7秒前
ddfighting发布了新的文献求助10
8秒前
喜喜发布了新的文献求助10
8秒前
易达发布了新的文献求助10
8秒前
9秒前
10秒前
毛毛球完成签到,获得积分10
10秒前
左手树发布了新的文献求助10
10秒前
11秒前
wanci应助体贴的嵩采纳,获得10
11秒前
餐巾纸完成签到 ,获得积分10
11秒前
12秒前
12秒前
善学以致用应助Lyy采纳,获得10
13秒前
qft完成签到,获得积分10
14秒前
15秒前
pancake应助粳咪采纳,获得30
15秒前
luo发布了新的文献求助10
16秒前
娜娜子发布了新的文献求助10
17秒前
18秒前
18秒前
科研通AI5应助易达采纳,获得30
18秒前
浮游应助qft采纳,获得10
18秒前
orixero应助张nmky采纳,获得10
19秒前
19秒前
20秒前
诸青梦完成签到 ,获得积分10
20秒前
万能图书馆应助luo采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156169
求助须知:如何正确求助?哪些是违规求助? 4351736
关于积分的说明 13550023
捐赠科研通 4194853
什么是DOI,文献DOI怎么找? 2300694
邀请新用户注册赠送积分活动 1300671
关于科研通互助平台的介绍 1245726