A Intelligent Fault Diagnosis Method Based on Optimized Parallel Convolutional Neural Network

卷积神经网络 计算机科学 断层(地质) 人工神经网络 人工智能 地质学 地震学
作者
Chunhui Li,Youfu Tang,Na Lei,Xu Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/jsen.2025.3525622
摘要

Addressing the limitations in feature extraction and model optimization complexity of convolutional neural network (CNN), a Intelligent fault diagnosis method based on Beluga Optimization algorithm (BWO) optimized parallel convolutional neural network (PCNN) is proposed. Firstly, the preprocessed vibration signal of the rolling bearing is converted into a two-dimensional time-frequency image by continuous wavelet transform (CWT). Secondly, the PCNN model is constructed, wherein the two branches independently learn distinct image weight values. This approach enhances deep space feature expression by complementing high-dimensional features. Then, the BWO algorithm is used to optimize the hyperparameters of PCNN, thereby enhancing the model's feature extraction and classification performance. Finally, multi-head self-attention (MSA) is introduced into PCNN framework to further improve the quality of feature representation and realize fault identification. The effectiveness and superiority of the method are verified by experimental data sets of rolling bearing and field test data sets of reciprocating compressor, the results of which show that the proposed model is significantly superior to the other models, exhibiting higher accuracy and better noise resistance, which can provide reliable technical support for practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shi hui应助宇老师采纳,获得10
刚刚
陈思完成签到,获得积分10
刚刚
SciGPT应助cy采纳,获得10
2秒前
王钰绮完成签到 ,获得积分10
4秒前
无情颖完成签到 ,获得积分10
4秒前
宁静致远完成签到,获得积分10
6秒前
顾矜应助活泼红牛采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
7秒前
风吹麦田应助科研通管家采纳,获得30
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
那时花开应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
wy.he应助科研通管家采纳,获得20
7秒前
SciGPT应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
标致的方盒完成签到,获得积分10
8秒前
蜘猪侠zx应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
那时花开应助科研通管家采纳,获得10
8秒前
大力契应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
桐桐应助科研通管家采纳,获得30
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378758
求助须知:如何正确求助?哪些是违规求助? 4503204
关于积分的说明 14015274
捐赠科研通 4411911
什么是DOI,文献DOI怎么找? 2423541
邀请新用户注册赠送积分活动 1416486
关于科研通互助平台的介绍 1393925