High performance neural network for solving coronary artery flow velocity field based on fluid component concentration

物理 组分(热力学) 人工神经网络 流量(数学) 流速 流体力学 领域(数学) 机械 心脏病学 医学 内科学 人工智能 热力学 数学 计算机科学 纯数学
作者
Bao Li,Hao Sun,Yang Yang,Luyao Fan,Xueke Li,J. C. Liu,Guangfei Li,Boyan Mao,Liyuan Zhang,Yi Zhang,Jinping Dong,Jian Liu,Chang Hou,Lihua Wang,Honghui Zhang,Suqin Huang,Tengfei Li,Liyuan Kong,Zijie Wang,Huanmei Guo,Aike Qiao,Youjun Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0244812
摘要

Rapid methods that can replace traditional inefficient computational fluid dynamics (CFD) for solving flow field are missing. We reconstructed three-dimensional (3D) coronary vascular tree models based on coronary computed tomography angiography (CCTA) images from 205 patients. Two fluid materials, blood and contrast agent, were mixed to simulate the flow field with concentration information under diverse boundary conditions, obtaining 2255 CFD simulations as deep learning samples. A dual-path physics-data multi-derived neural network (PDMNN) was designed, inputting geometric 3D point cloud and concentration information, respectively, and outputting 3D flow velocity field. Flow velocity in the coronary artery was clinically measured in 26 patients to verify the proposed PDMNN. For the 100 cases in a test set, the mean square error of the flow field velocity between the CFD calculations and the PDMNN predictions is 0.0309. However, the time taken by the PDMNN is significantly reduced (10 s VS 0.5 h). Clinically measured mean blood flow velocity and PDMNN predictions did not yield statistically significant differences (0.00 ± 0.05 m/s, P > 0.05). The proposed PDMNN present excellent computation accuracy and efficiency, holding a significant technical value for the clinical and engineering application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fdf完成签到,获得积分10
1秒前
共享精神应助我爱科研采纳,获得10
1秒前
2秒前
ChenSSS发布了新的文献求助10
2秒前
sisi发布了新的文献求助10
3秒前
5秒前
zx发布了新的文献求助10
6秒前
归海一刀完成签到,获得积分10
7秒前
7秒前
腿毛没啦完成签到,获得积分10
7秒前
baby709466应助镇痛蚊子采纳,获得10
8秒前
8秒前
李冰洋发布了新的文献求助10
9秒前
10秒前
HEIKU应助ai采纳,获得10
13秒前
勤恳的断秋完成签到 ,获得积分10
13秒前
id发布了新的文献求助10
13秒前
赘婿应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
17秒前
无花果应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得30
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
id完成签到,获得积分10
18秒前
清爽老九发布了新的文献求助10
18秒前
19秒前
墨枝完成签到 ,获得积分10
20秒前
正直海之关注了科研通微信公众号
21秒前
1433223完成签到,获得积分10
21秒前
小马甲应助yangluyao采纳,获得10
23秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340979
求助须知:如何正确求助?哪些是违规求助? 2968772
关于积分的说明 8634963
捐赠科研通 2648270
什么是DOI,文献DOI怎么找? 1450118
科研通“疑难数据库(出版商)”最低求助积分说明 671711
邀请新用户注册赠送积分活动 660835