已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image forgery localization integrating multi-scale and boundary features

计算机科学 图像(数学) 比例(比率) 边界(拓扑) 计算机视觉 人工智能 地图学 数学 地理 数学分析
作者
Xinyan Yang,Rongchuan Zhang,Li Shao,Gang Liang
出处
期刊:The Computer Journal [Oxford University Press]
标识
DOI:10.1093/comjnl/bxae112
摘要

Abstract Image forgery localization identifies tampered regions within an image by extracting distinctive forgery features. Current methods mainly use convolutional neural networks (CNNs) to extract features. However, CNNs’ limited receptive field emphasizes local features, impeding the global modeling of crucial lower-level features like edges and textures, leading to decreased precision. Moreover, prior methods use pyramid networks for multi-scale feature extraction but show deficiencies in multi-scale and interlayer modeling, leading to inadequate multi-scale information representation and limiting flexibility to tampered regions of varying sizes. To address these issues, this paper proposes a Transformer-based model integrating multi-scale and boundary features. The model employs a Pyramid Vision Transformer as the encoder, using self-attention over convolution to enhance global context modeling. Building on this, the model incorporates a multi-scale feature enhancement module that enriches forgery features by paralleling various convolutional layers. Features at various encoder stages are integrated through a cross-stage interaction module, enabling multi-level feature correlation for a strong feature representation. Furthermore, the model includes a forgery boundary information-guided branch, which focuses precisely on tampered region structures without introducing irrelevant noise. Experiments demonstrate that our model surpasses previous methods in localization accuracy, with F1 and AUC improving by 8.5% and 2.2% in pre-training, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8R60d8应助落后的安寒采纳,获得10
2秒前
心旷神怡发布了新的文献求助10
2秒前
钱仙人完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
Flanker发布了新的文献求助10
6秒前
yy发布了新的文献求助10
7秒前
9秒前
haha发布了新的文献求助10
9秒前
10秒前
笑而不语完成签到 ,获得积分10
10秒前
11秒前
MoriZhang发布了新的文献求助10
11秒前
今后应助可可采纳,获得10
11秒前
隐形曼青应助可可采纳,获得10
12秒前
CC发布了新的文献求助10
12秒前
12秒前
闹闹加油发布了新的文献求助10
12秒前
柾国完成签到,获得积分20
13秒前
魔幻的驳发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
15秒前
上官若男应助月光入梦采纳,获得10
16秒前
8R60d8应助落后的安寒采纳,获得10
17秒前
xjx发布了新的文献求助80
18秒前
19秒前
8R60d8应助夏虫采纳,获得10
19秒前
Coco椰给Coco椰的求助进行了留言
20秒前
充电宝应助心旷神怡采纳,获得10
20秒前
20秒前
20秒前
狄蹇完成签到,获得积分20
20秒前
yy完成签到,获得积分10
21秒前
Soey发布了新的文献求助10
22秒前
zhongu应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172