A Machine Learning‐Based Approach for the Prediction of Anticoagulant Activity of Hypericum perforatum L. and Evaluation of Compound Activity

贯叶连翘 化学 抗凝剂 生物活性 体外 药理学 生物化学 心理学 医学 精神科
作者
Zhiyong Zhang,Wennan Nie,Yijing Zhang,Mulan He,Cunhao Li,Shule Zhang,Wenlong Li
出处
期刊:Phytochemical Analysis [Wiley]
标识
DOI:10.1002/pca.3468
摘要

ABSTRACT Introduction Hypericum perforatum L. (HPL) is extensively researched domestically and internationally as a medicinal plant. However, no reports of studies related to the anticoagulant activity of HPL have been retrieved. The specific bioactive components are unknown. Objective The aim of this study was to develop a machine learning (ML) method for rapid prediction of anticoagulant activity in HPL and evaluation of compound activity. Materials and methods. First, an in vitro anticoagulant activity assay was developed for the determination of the bioactivity of various medicinal parts of HPL. Then, the peak areas of compounds in HPL were integrated using UPLC‐Q‐TOF‐MS analysis. Subsequently, nine independent ML methods and two ensemble learning methods have been established to predict the anticoagulant activity of HPL and to evaluate the contribution of compounds. Feature importance scores were used for models visualization. Results A total of 24 compounds were shown to exhibited superior anticoagulant activity. Molecular docking experiments likewise confirmed this result. The results show that the branches of HPL have excellent anticoagulant activity, which has been previously overlooked. The established ML model demonstrated good performance in the prediction of the activity of HPL. Conclusion The results were accurate and reliable, which significantly improved the efficiency of active compounds screening, and further exploration in this area is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学海无涯发布了新的文献求助10
1秒前
1秒前
领导范儿应助阳光的豁采纳,获得10
2秒前
李卓颖发布了新的文献求助10
3秒前
CodeCraft应助等风的人采纳,获得10
3秒前
3秒前
包容盼山发布了新的文献求助10
4秒前
4秒前
4秒前
ggyybb完成签到 ,获得积分10
5秒前
霓娜酱发布了新的文献求助10
5秒前
赘婿应助zaizai采纳,获得10
6秒前
zhaiwk发布了新的文献求助100
6秒前
qiang发布了新的文献求助10
7秒前
萤阳发布了新的文献求助10
7秒前
jianhan发布了新的文献求助10
9秒前
10秒前
awang完成签到,获得积分10
10秒前
zxq完成签到,获得积分10
11秒前
ding应助jx314采纳,获得10
11秒前
11秒前
田様应助冷傲山彤采纳,获得10
12秒前
粗心小熊猫完成签到,获得积分10
14秒前
Francisco2333完成签到,获得积分10
16秒前
小兰发布了新的文献求助10
16秒前
18秒前
19秒前
潮汐完成签到,获得积分10
20秒前
21秒前
21秒前
遮宁完成签到,获得积分10
22秒前
科研通AI5应助包容盼山采纳,获得10
22秒前
冷酷似风完成签到,获得积分10
23秒前
23秒前
华仔应助陶渊明采纳,获得10
25秒前
peace发布了新的文献求助10
26秒前
乐弈发布了新的文献求助10
27秒前
王晓雪完成签到,获得积分10
27秒前
封雁菡完成签到,获得积分10
28秒前
怕孤独的访云完成签到 ,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737690
求助须知:如何正确求助?哪些是违规求助? 3281323
关于积分的说明 10024607
捐赠科研通 2998066
什么是DOI,文献DOI怎么找? 1645021
邀请新用户注册赠送积分活动 782472
科研通“疑难数据库(出版商)”最低求助积分说明 749814