二十面体对称
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)
DNA
DNA折纸
2019年冠状病毒病(COVID-19)
领域(数学分析)
2019-20冠状病毒爆发
细胞生物学
生物
化学
病毒学
计算生物学
遗传学
结晶学
医学
爆发
数学分析
病理
传染病(医学专业)
疾病
数学
作者
Qingqing Feng,Keman Cheng,Lizhuo Zhang,Dongshu Wang,Xiaoyu Gao,Jie Liang,Guangna Liu,Nana Ma,Xu Chen,Ming Tang,Liting Chen,Xinwei Wang,Xuehui Ma,Jiajia Zou,Quanwei Shi,Pei Du,Qihui Wang,Hengliang Wang,Guangjun Nie,Xiao Zhao
标识
DOI:10.1038/s41467-024-53937-4
摘要
Multivalent antigen display on nanoparticles can enhance the immunogenicity of nanovaccines targeting viral moieties, such as the receptor binding domain (RBD) of SARS-CoV-2. However, particle morphology and size of current nanovaccines are significantly different from those of SARS-CoV-2. Additionally, surface antigen patterns are not controllable to enable the optimization of B cell activation. Herein, we employ an icosahedral DNA origami (ICO) as a display particle for RBD nanovaccines, achieving morphology and diameter like the virus (91 ± 11 nm). The surface addressability of DNA origami permits facile modification of the ICO surface with numerous RBD antigen clusters (ICO-RBD) to form various antigen patterns. Using an in vitro screening system, we demonstrate that the antigen spacing, antigen copies within clusters and cluster number parameters of the surface antigen pattern all impact the ability of the nanovaccines to activate B cells. Importantly, the optimized ICO-RBD nanovaccines evoke stronger and more enduring humoral and T cell immune responses in female mouse models compared to soluble RBD antigens, and the multivalent display broaden the protection range of B cell responses to more mutant strains. Our vaccines activate similar humoral immunity, observable stronger cellular immunity and more memory immune cells compared to trimeric mRNA vaccines. Multivalent antigen display on nanoparticles can enhance the immunogenicity of vaccines targeting viral moieties. Here the authors employ DNA origami to rationally design and assemble nanovaccines against SARS-CoV-2 and characterize cellular and humoral immune response in female mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI