Prediction of Early Mortality in Esophageal Cancer Patients with Liver Metastasis Using Machine Learning Approaches

医学 接收机工作特性 逻辑回归 食管癌 转移 支持向量机 单变量 梯度升压 机器学习 癌症 肿瘤科 多元分析 内科学 决策树 人工智能 多元统计 计算机科学 随机森林
作者
Y. Sheng,Liyuan Zhang,Zuhai Hu,Bin Peng
出处
期刊:Life [Multidisciplinary Digital Publishing Institute]
卷期号:14 (11): 1437-1437
标识
DOI:10.3390/life14111437
摘要

Patients with esophageal cancer liver metastasis face a high risk of early mortality, making accurate prediction crucial for guiding clinical decisions. However, effective predictive tools are currently limited. In this study, we used clinicopathological data from 1897 patients diagnosed with esophageal cancer liver metastasis between 2010 and 2020, which were sourced from the SEER database. Prognostic factors were identified using univariate and multivariate logistic regression, and seven machine learning models, including extreme gradient boosting (XGBoost) and support vector machine (SVM), were developed to predict early mortality. The models were evaluated using Receiver Operating Characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and F1 scores. Results showed that 40% of patients experienced all-cause early mortality and 38% had cancer-specific early mortality. Key predictors of early mortality included age, location, chemotherapy, and lung metastasis. Among the models, XGBoost performed best in predicting all-cause early mortality, while SVM excelled in predicting cancer-specific early mortality. These findings demonstrate that machine learning models, particularly XGBoost and SVM, can serve as valuable tools for predicting early mortality in patients with esophageal cancer liver metastasis, aiding clinical decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助啦啦啦采纳,获得30
2秒前
爆米花应助啦啦啦啦采纳,获得10
3秒前
领导范儿应助小韩同学采纳,获得10
4秒前
梨花酒完成签到,获得积分10
5秒前
糖糖发布了新的文献求助10
6秒前
10秒前
14秒前
小韩同学发布了新的文献求助10
16秒前
zzt发布了新的文献求助10
17秒前
故意的山河完成签到,获得积分10
17秒前
jin应助Charlie采纳,获得20
17秒前
量子星尘发布了新的文献求助10
19秒前
人间完成签到,获得积分10
20秒前
22秒前
xin发布了新的文献求助10
23秒前
某慧发布了新的文献求助20
27秒前
糖糖完成签到,获得积分10
28秒前
maoy发布了新的文献求助10
28秒前
28秒前
湘湘完成签到,获得积分10
29秒前
赘婿应助徐雪雯采纳,获得10
31秒前
fdscat发布了新的文献求助10
32秒前
32秒前
科研通AI2S应助活力山蝶采纳,获得10
34秒前
jing发布了新的文献求助20
35秒前
zd发布了新的文献求助10
36秒前
湘湘发布了新的文献求助10
36秒前
awrawsaf发布了新的文献求助10
36秒前
123333发布了新的文献求助10
38秒前
38秒前
zzt完成签到,获得积分10
39秒前
40秒前
41秒前
42秒前
FashionBoy应助科研通管家采纳,获得10
42秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
传奇3应助科研通管家采纳,获得10
42秒前
42秒前
MingDong发布了新的文献求助10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021