A new dual-channel and dual-functional fluorescent probe, DX3-AXI, is developed with the aid of computational chemistry, enabling viscosity and SO2 detection in separate fluorescence emission channels. The probe DX3-AXI exhibits significant fluorescence changes in the detection, demonstrating excellent interference resistance and a linear response. Through Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT) calculations, along with hole–electron molecular analysis, energy level structure, and molecular local attachment energy analysis, the mechanism of the dual-channel response of the DX3-AXI probe is systematically revealed, demonstrating that the regulation of interactions between the rotatable bond and double bond drives the fluorescence changes. Furthermore, a portable sensing platform for on-site sulfite detection in water samples was developed by coupling the probe with a smartphone, enabling the rapid qualitative and semiquantitative detection of sulfite. Significantly, DX3-AXI has demonstrated successful application in detecting changes in the microenvironment of normal and cancer cells while also enabling the visualization of viscosity variations in the liver tissue of mice with liver injury. The DX3-AXI probe has shown significant potential for application in disease diagnostics, drug assessment, and environmental monitoring.