Compatibility of Halide Electrolytes in Solid-State Li–S Battery Cathodes

相容性(地球化学) 卤化物 阴极 电解质 固态 材料科学 无机化学 化学工程 化学 物理化学 电极 复合材料 工程类
作者
Sachiko Yanagihara,Jan Huebner,Zheng Huang,Atsushi Inoishi,Hirofumi Akamatsu,Katsuro Hayashi,Saneyuki Ohno
出处
期刊:Chemistry of Materials [American Chemical Society]
标识
DOI:10.1021/acs.chemmater.4c02159
摘要

The utilization of earth-abundant and high-capacity sulfur in solid-state batteries presents a promising strategy to circumvent the use of rare transition metals and enhance achievable specific energy. However, numerous challenges remain. The transport limitation within the cathode composite, particularly with sulfide electrolytes during charging, has been identified as a major degradation mechanism in solid-state Li–S batteries. This degradation is linked to electrolyte oxidation and a concomitant reduction in the effective ionic conductivity of the cathode composite. Inspired by the sufficiently high oxidation stability of halide-based electrolytes, we investigated their compatibility with solid-state Li–S batteries in this work. The electrochemical stability of halides in contact with conductive additives, the stability window of fast ion transport in the composite electrodes, and chemical compatibility with sulfur-active materials (e.g., S and Li2S), in addition to the cyclability of the halide-based composite electrodes, are explored. Three halides were employed as model electrolytes: Li3InCl6, Li3YCl6, and Li3YBr6. Despite its high oxidation stability, Li3InCl6 exhibited rapid degradation due to electrolyte reduction. The composite with Li3YCl6 lost its capacity because of chemical incompatibility, especially with Li2S, resulting in the formation of LiYS2 at the interface. In contrast, Li3YBr6 demonstrated superior performance, maintaining a capacity of 1100 mAh gS–1 for 20 cycles (normalized to the sulfur content in the cathode material). This study elucidates the degradation mechanisms of halide-based solid-state Li–S batteries and proposes potential design strategies to mitigate chemical incompatibility issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪比八不完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
wang发布了新的文献求助10
3秒前
FF发布了新的文献求助10
3秒前
Sucht完成签到,获得积分10
4秒前
prosperp举报Zola求助涉嫌违规
4秒前
RBT发布了新的文献求助10
4秒前
梁京完成签到,获得积分10
4秒前
4秒前
dd完成签到,获得积分10
5秒前
Bluebulu完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
zzz发布了新的文献求助10
8秒前
善学以致用应助小姜采纳,获得10
9秒前
9秒前
漂流完成签到,获得积分10
9秒前
潇洒的凡灵完成签到 ,获得积分10
9秒前
10秒前
体贴的梦桃完成签到,获得积分10
10秒前
10秒前
波比大王发布了新的文献求助10
12秒前
12秒前
雨肖完成签到,获得积分10
12秒前
疯狂的月亮完成签到,获得积分10
13秒前
DAGeee完成签到,获得积分0
13秒前
鸿hhh发布了新的文献求助30
14秒前
缪连虎发布了新的文献求助10
14秒前
充电宝应助CarrieTung采纳,获得10
14秒前
852应助xiao采纳,获得10
15秒前
15秒前
wjx完成签到,获得积分10
15秒前
yuujinnA发布了新的文献求助10
16秒前
聪聪完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468254
求助须知:如何正确求助?哪些是违规求助? 3061233
关于积分的说明 9075270
捐赠科研通 2751632
什么是DOI,文献DOI怎么找? 1509981
邀请新用户注册赠送积分活动 697563
科研通“疑难数据库(出版商)”最低求助积分说明 697530