木质素
喷气燃料
催化作用
碳纤维
材料科学
化学工程
化学
有机化学
复合数
复合材料
工程类
作者
Sheng Wang,Jiawen Liao,Xueqing Qiu,Xuliang Lin,Yanlin Qin
标识
DOI:10.1021/acscatal.4c04888
摘要
Merging efficient H2 generation with high-value utilization of biomass via a solar-driven catalytic redox technology presents a promising strategy for overall biorefinery. As the most abundant aromatic polymer in nature, lignin is considered an ideal sacrificial agent to enhance the reductive H2 evolution, coproducing high-value aromatic chemicals/fuels instead of waste carbon oxides. However, the development of an energy-efficient and productive photocatalysis system remains challenging. Herein, a photothermal cocatalytic technology was developed for synergistic enhancement on the redox activities. A feasible synthesis method was proposed to precisely construct a light-sensitive heterojunction between active Pt and NixP, bridged by technical lignin–carbon. Benefiting from the advanced modulation effect of lignin–carbon, accelerated electron transfer and active structural rearrangement were realized on the defective catalyst surface. Combining an optimized band gap structure, H2 evolution efficiency was boosted under photothermal cocatalysis and showed a splendid H2 evolution rate of 10.7 mmol·gcat–1·h–1 based on a lignin-derived monomer (vanillyl alcohol), 15-fold higher than either photocatalysis or thermocatalysis alone. The H2 evolution obtained from technical lignin (2.9 mmol·gcat–1·h–1) surpassed the existing level of biomass. Meanwhile, the controllable coupling of lignin or its derived monomers was enhanced simultaneously, yielding C13–C16 dimers (43.8% yield) from the lignin-derived monomer via Cα node, which act as ideal precursors for jet fuel. This work advances lignin upgrading for hydrogen energy and biofuels.
科研通智能强力驱动
Strongly Powered by AbleSci AI