纤维素
数码产品
材料科学
纳米线
印刷电子产品
软机器人
再生纤维素
纳米技术
柔性电子器件
3d打印
高分子科学
复合材料
化学工程
工程类
制造工程
电气工程
墨水池
执行机构
作者
Luz Meza,Darpan Shukla,Hasan Sadeghifar,Lilian C. Hsiao,Yong Zhu,Richard A. Venditti
标识
DOI:10.1002/adsu.202400713
摘要
Abstract This study describes the production of biodegradable and recyclable flexible electronic devices created by screen‐printing silver nanowires (AgNWs) onto regenerated cellulose films (RCFs). RCFs, derived from microcrystalline cellulose (MCC), are developed and further enhanced for flexibility with additives such as glycerol and poly(ethylene glycol) diglycidyl ether (PEGDE). The resulting cellulose films display relatively high tensile strength (up to 120 MPa), low Young's Modulus (down to 1500 MPa), and 90% optical transparency. Ink with AgNWs and poly(ethylene oxide) (PEO) as a binder is screen‐printed on regenerated cellulose films. The printed AgNWs patterns exhibit high electrical conductivity, excellent electromechanical performance, and strong interfacial adhesion with RCFs. To demonstrate the application of printed AgNWs on RCFs for soft electronics, transparent conductive electrodes (TCEs) are fabricated. Grid and honeycomb structures are printed separately and evaluated in terms of sheet resistance and optical transparency. TCEs with ≈80% transparency and very low sheet resistance (0.045 Ω sq −1 ) are obtained. Furthermore, enzymatic hydrolysis of the cellulose substrate and the recovery for reuse of the AgNWs are demonstrated, showing the potential of integrating natural polymers and recyclable nanomaterials for eco‐friendly and sustainable soft flexible electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI