Hardware‐Feasible and Efficient N‐Type Organic Neuromorphic Signal Recognition via Reservoir Computing

神经形态工程学 计算机科学 突触重量 感知器 油藏计算 信号(编程语言) 材料科学 计算机体系结构 人工神经网络 计算机硬件 循环神经网络 人工智能 程序设计语言
作者
Riping Liu,Yifei He,Xiuyuan Zhu,Jiayao Duan,Chuan Liu,Zhuang Xie,Iain McCulloch,Wan Yue
出处
期刊:Advanced Materials [Wiley]
被引量:7
标识
DOI:10.1002/adma.202409258
摘要

Abstract Organic electrochemical synaptic transistors (OESTs), inspired by the biological nervous system, have garnered increasing attention due to their multifunctional applications in neuromorphic computing. However, the practical implementation of OESTs for signal recognition—particularly those utilizing n‐type organic mixed ionic‐electronic conductors (OMIECs)—still faces significant challenges at the hardware level. Here, a state‐of‐the‐art small‐molecule n‐type OEST integrated within a physically simple and hardware feasible reservoir‐computing (RC) framework for practical temporal signal recognition is presented. This integration is achieved by leveraging the adjustable synaptic properties of the n‐OEST, which exhibits tunable nonlinear short‐term memory, transitioning from volatility to nonvolatility, and demonstrating adaptive temporal specificity. Additionally, the nonvolatile OEST offers 256 conductance levels and a wide dynamic range (≈147) in long‐term potentiation/depression (LTP/LTD), surpassing previously reported n‐OESTs. By combining volatile n‐OESTs as reservoirs with a single‐layer perceptron readout composed of nonvolatile n‐OEST networks, this physical RC system achieves substantial recognition accuracy for both handwritten‐digit images (94.9%) and spoken digit (90.7%), along with ultrahigh weight efficiency. Furthermore, this system demonstrates outstanding accuracy (98.0%) by grouped RC in practical sleep monitoring, specifically in snoring recognition. Here, a reliable pathway for OMIEC‐driven computing is presented to advance bioinspired hardware‐based neuromorphic computing in the physical world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧富完成签到 ,获得积分10
2秒前
钟梓袄发布了新的文献求助10
2秒前
蒸汽波波发布了新的文献求助10
2秒前
4秒前
4秒前
moon发布了新的文献求助10
4秒前
星辰大海应助yuye_Liu采纳,获得10
6秒前
6秒前
淡然的妙芙应助无心采纳,获得10
6秒前
changping应助超级的访天采纳,获得10
7秒前
7秒前
jawa完成签到 ,获得积分10
7秒前
7秒前
大模型应助蒸汽波波采纳,获得10
8秒前
8秒前
SciGPT应助Xinxin采纳,获得10
8秒前
8秒前
asdfqwer应助无辜的鼠标采纳,获得10
9秒前
moon完成签到,获得积分10
9秒前
9秒前
dz发布了新的文献求助10
9秒前
10秒前
隐形曼青应助自然的钻石采纳,获得10
10秒前
11秒前
11秒前
rosemary发布了新的文献求助10
11秒前
青果发布了新的文献求助10
12秒前
Smole发布了新的文献求助10
13秒前
李霞发布了新的文献求助30
13秒前
14秒前
辛勤冷松完成签到 ,获得积分10
16秒前
17秒前
核桃应助自由抽屉采纳,获得10
17秒前
18秒前
皓彩发布了新的文献求助10
18秒前
ahslyycky完成签到,获得积分10
19秒前
大象放冰箱完成签到,获得积分10
20秒前
华仔应助隐形的邦布采纳,获得10
21秒前
22秒前
黄登锋发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184646
求助须知:如何正确求助?哪些是违规求助? 4370384
关于积分的说明 13610110
捐赠科研通 4222527
什么是DOI,文献DOI怎么找? 2315881
邀请新用户注册赠送积分活动 1314482
关于科研通互助平台的介绍 1263386