Residual Pix2Pix networks: streamlining PET/CT imaging process by eliminating CT energy conversion

残余物 衰减 核医学 衰减校正 能量(信号处理) 相似性(几何) 人工智能 计算机断层摄影术 物理 生物系统 数学 模式识别(心理学) 计算机科学 统计 生物 图像(数学) 光学 医学 算法 放射科
作者
Sara Ghanbari,Alireza Sadremomtaz
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/ad97c2
摘要

Abstract Objective
Attenuation correction of PET data is commonly conducted through the utilization of a secondary imaging technique to produce attenuation maps. The customary approach to attenuation correction, which entails the employment of CT images, necessitates energy conversion. However, the present study introduces a novel deep learning-based method that obviates the requirement for CT images and energy conversion.
Methods
This study employs a residual Pix2Pix network to generate attenuation-corrected PET images using the 4033 2D PET images of 37 healthy adult brains for train and test. The model, implemented in TensorFlow and Keras, was evaluated by comparing image similarity, intensity correlation, and distribution against CT-AC images using metrics such as PSNR and SSIM for image similarity, while a 2D histogram plotted pixel intensities. Differences in standardized uptake values (SUV) demonstrated the model's efficiency compared to the CTAC method.
Results
The residual Pix2Pix demonstrated strong agreement with the CT-based attenuation correction, the proposed network yielding MAE, MSE, PSNR, and MS-SSIM values of 3×10-3, 2×10-4, 38.859, and 0.99, respectively. The residual Pix2Pix model's results showed a negligible mean SUV difference of 8×10-4(P-value = 0.10), indicating its accuracy in PET image correction. The residual Pix2Pix model exhibits high precision with a strong correlation coefficient of R2 = 0.99 to CT-based methods. The findings indicate that this approach surpasses the conventional method in terms of precision and efficacy.
Conclusions
The proposed residual Pix2Pix framework enables accurate and feasible attenuation correction of brain F-FDG PET without CT. However, clinical trials are required to evaluate its clinical performance. The PET images reconstructed by the framework have low errors compared to the accepted test reliability of PET/CT, indicating high quantitative similarity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
4秒前
123发布了新的文献求助10
5秒前
李健应助jovrtic采纳,获得10
6秒前
6秒前
鲤鱼远望发布了新的文献求助30
7秒前
Yi发布了新的文献求助10
7秒前
FBI汪宁完成签到,获得积分10
7秒前
这个哲完成签到,获得积分10
8秒前
sunbaek发布了新的文献求助10
8秒前
陈向琴发布了新的文献求助10
8秒前
观众完成签到,获得积分10
9秒前
张土豆发布了新的文献求助10
9秒前
10秒前
Komorebi完成签到,获得积分10
10秒前
11秒前
海阔云高完成签到 ,获得积分10
11秒前
Dandy发布了新的文献求助10
11秒前
Yi完成签到,获得积分10
12秒前
研友_VZG7GZ应助HHR33采纳,获得10
13秒前
13秒前
李健应助淡定的达达采纳,获得10
14秒前
跳跳虎发布了新的文献求助10
15秒前
今后应助vanshaw.vs采纳,获得10
15秒前
研友_VZG7GZ应助Yau采纳,获得10
16秒前
小萝卜莉发布了新的文献求助10
16秒前
16秒前
韩月完成签到,获得积分20
17秒前
Xbro完成签到,获得积分10
19秒前
123完成签到,获得积分20
19秒前
HHHAN完成签到,获得积分10
19秒前
irislee发布了新的文献求助10
20秒前
21秒前
22秒前
杳鸢应助liuyun采纳,获得10
23秒前
24秒前
牛牛关注了科研通微信公众号
25秒前
26秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207318
求助须知:如何正确求助?哪些是违规求助? 2856706
关于积分的说明 8106534
捐赠科研通 2521854
什么是DOI,文献DOI怎么找? 1355242
科研通“疑难数据库(出版商)”最低求助积分说明 642199
邀请新用户注册赠送积分活动 613478