Residual Pix2Pix networks: streamlining PET/CT imaging process by eliminating CT energy conversion

残余物 衰减 核医学 衰减校正 能量(信号处理) 相似性(几何) 人工智能 计算机断层摄影术 物理 生物系统 数学 模式识别(心理学) 计算机科学 统计 生物 图像(数学) 光学 医学 算法 放射科
作者
Sara Ghanbari,Alireza Sadremomtaz
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/ad97c2
摘要

Abstract Objective
Attenuation correction of PET data is commonly conducted through the utilization of a secondary imaging technique to produce attenuation maps. The customary approach to attenuation correction, which entails the employment of CT images, necessitates energy conversion. However, the present study introduces a novel deep learning-based method that obviates the requirement for CT images and energy conversion.
Methods
This study employs a residual Pix2Pix network to generate attenuation-corrected PET images using the 4033 2D PET images of 37 healthy adult brains for train and test. The model, implemented in TensorFlow and Keras, was evaluated by comparing image similarity, intensity correlation, and distribution against CT-AC images using metrics such as PSNR and SSIM for image similarity, while a 2D histogram plotted pixel intensities. Differences in standardized uptake values (SUV) demonstrated the model's efficiency compared to the CTAC method.
Results
The residual Pix2Pix demonstrated strong agreement with the CT-based attenuation correction, the proposed network yielding MAE, MSE, PSNR, and MS-SSIM values of 3×10-3, 2×10-4, 38.859, and 0.99, respectively. The residual Pix2Pix model's results showed a negligible mean SUV difference of 8×10-4(P-value = 0.10), indicating its accuracy in PET image correction. The residual Pix2Pix model exhibits high precision with a strong correlation coefficient of R2 = 0.99 to CT-based methods. The findings indicate that this approach surpasses the conventional method in terms of precision and efficacy.
Conclusions
The proposed residual Pix2Pix framework enables accurate and feasible attenuation correction of brain F-FDG PET without CT. However, clinical trials are required to evaluate its clinical performance. The PET images reconstructed by the framework have low errors compared to the accepted test reliability of PET/CT, indicating high quantitative similarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感觉他香香的完成签到 ,获得积分10
刚刚
刚刚
刚刚
淡然依凝发布了新的文献求助10
1秒前
牙牙侠完成签到,获得积分10
2秒前
FashionBoy应助lixm采纳,获得10
2秒前
2秒前
天边外发布了新的文献求助10
3秒前
wtc完成签到,获得积分10
3秒前
易达发布了新的文献求助30
5秒前
lpw发布了新的文献求助10
5秒前
yangyj发布了新的文献求助10
7秒前
7秒前
今后应助牙牙侠采纳,获得10
7秒前
皮皮虾小段完成签到 ,获得积分10
7秒前
充电宝应助美味的薯片采纳,获得10
8秒前
cm完成签到 ,获得积分10
8秒前
8秒前
柏林寒冬应助cigar采纳,获得10
9秒前
GLL完成签到,获得积分10
9秒前
9秒前
今后应助要减肥的晓曼采纳,获得10
10秒前
10秒前
烟花应助流光采纳,获得10
11秒前
田様应助西子阳采纳,获得10
13秒前
happyGUGU完成签到,获得积分20
13秒前
mm完成签到,获得积分10
13秒前
Zzhangoo发布了新的文献求助10
15秒前
17秒前
情怀应助PL采纳,获得10
18秒前
19秒前
新手鼓手完成签到,获得积分20
20秒前
linlinyilulvdeng完成签到,获得积分10
20秒前
22秒前
JC完成签到,获得积分10
22秒前
天边外完成签到,获得积分10
22秒前
田様应助LOWRY采纳,获得30
23秒前
给我个二硫碘化钾完成签到,获得积分10
23秒前
cjchem发布了新的文献求助10
23秒前
yangyj完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070