Nomograms for Predicting Overall and Cancer-Specific Survival Among Second Primary Endometrial Cancer in Primary Colorectal Carcinoma Patients

列线图 医学 子宫内膜癌 肿瘤科 内科学 结直肠癌 接收机工作特性 一致性 癌症 临床终点 临床试验
作者
Linli Liu
出处
期刊:Risk Management and Healthcare Policy [Dove Medical Press]
卷期号:Volume 17: 2959-2970
标识
DOI:10.2147/rmhp.s481880
摘要

Background: Endometrial cancer (EC) is one of the most frequent gynecologic cancers, approximately 20% of patients are regarded as high-risk with poor prognosis. However, more details of patients with second primary endometrial cancer (SPEC) after colorectal cancer (CRC) remain poorly understood. We therefore proposed to construct two nomograms to predict 3- and 5-year overall survival (OS) and cancer-specific survival (CSS) rates to facilitate clinical application. Methods: A total of 1631 participants were identified in the SEER database from 1973 to 2020. We constructed and validated the nomograms for predicting OS and CSS. The receiver operating characteristic curves, calibration plot, decision curve analysis, C-index, net reclassification improvement, and integrated discrimination improvement were applied to evaluate the predictive performance. Finally, the Prognostic index was calculated and used for risk stratification of Kaplan-Meier survival analysis based on different treatment options. Results: Nomograms of OS and CSS were formulated based on the independent prognostic factors utilizing the training set. The 3- and 5- years of OS nomogram demonstrated good discrimination (AUC = 0.840 and 0.829, respectively), well-calibrated power, and excellent clinical effectiveness. Our nomograms of predicting OS and CSS had a concordance index of 0.801 and 0.866 compared with 0.676 and 0.746 for the AJCC staging system, and more importantly, demonstrated a better forecast accuracy. Chemoradiotherapy displayed a significant survival benefit in the high-risk groups, but proceeding to surgery plus chemotherapy showed a favorable survival for the low groups based on all patients. Conclusion: We developed and internally validated multivariable models that predict OS and CSS risk of SPEC in patients with a CRC to help clinicians make applicable clinical decisions for patients. Keywords: endometrial neoplasms, colorectal carcinoma, nomogram, overall survival, cancer-specific survival

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangsiyuan完成签到 ,获得积分10
刚刚
彭于晏应助youxin采纳,获得10
1秒前
天天快乐应助庄庄采纳,获得10
1秒前
陈偏偏发布了新的文献求助10
1秒前
科研通AI6应助考拉采纳,获得10
2秒前
xxx发布了新的文献求助10
2秒前
清秀的沉鱼完成签到 ,获得积分10
2秒前
蓝天发布了新的文献求助10
3秒前
3秒前
深情安青应助Smile_Uo采纳,获得10
3秒前
xuxuxuuxuxux完成签到,获得积分10
3秒前
4秒前
塔卫二第一突破手完成签到,获得积分10
4秒前
Love发呆发布了新的文献求助10
5秒前
清茶旧友完成签到,获得积分10
5秒前
Owen应助人工智能小配方采纳,获得10
5秒前
6秒前
华仔应助Jayavi采纳,获得10
7秒前
yangdoudou发布了新的文献求助10
7秒前
年轻上线完成签到,获得积分10
7秒前
tjnusq发布了新的文献求助10
8秒前
CipherSage应助喵喵采纳,获得10
11秒前
国镌胜发布了新的文献求助10
11秒前
11秒前
代111完成签到,获得积分10
12秒前
席冥完成签到,获得积分10
13秒前
17秒前
孙朱珠完成签到,获得积分10
19秒前
vv完成签到,获得积分10
19秒前
喵喵完成签到,获得积分20
20秒前
ixueyi完成签到,获得积分10
20秒前
20秒前
21秒前
重要青柏完成签到,获得积分10
21秒前
庄庄发布了新的文献求助10
21秒前
Jayavi完成签到,获得积分10
22秒前
23秒前
喵喵发布了新的文献求助10
24秒前
24秒前
陈偏偏完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603942
求助须知:如何正确求助?哪些是违规求助? 4688789
关于积分的说明 14856201
捐赠科研通 4695596
什么是DOI,文献DOI怎么找? 2541056
邀请新用户注册赠送积分活动 1507200
关于科研通互助平台的介绍 1471832