Nomograms for Predicting Overall and Cancer-Specific Survival Among Second Primary Endometrial Cancer in Primary Colorectal Carcinoma Patients

列线图 医学 子宫内膜癌 肿瘤科 内科学 结直肠癌 接收机工作特性 一致性 癌症 临床终点 临床试验
作者
Linli Liu
出处
期刊:Risk Management and Healthcare Policy [Dove Medical Press]
卷期号:Volume 17: 2959-2970
标识
DOI:10.2147/rmhp.s481880
摘要

Background: Endometrial cancer (EC) is one of the most frequent gynecologic cancers, approximately 20% of patients are regarded as high-risk with poor prognosis. However, more details of patients with second primary endometrial cancer (SPEC) after colorectal cancer (CRC) remain poorly understood. We therefore proposed to construct two nomograms to predict 3- and 5-year overall survival (OS) and cancer-specific survival (CSS) rates to facilitate clinical application. Methods: A total of 1631 participants were identified in the SEER database from 1973 to 2020. We constructed and validated the nomograms for predicting OS and CSS. The receiver operating characteristic curves, calibration plot, decision curve analysis, C-index, net reclassification improvement, and integrated discrimination improvement were applied to evaluate the predictive performance. Finally, the Prognostic index was calculated and used for risk stratification of Kaplan-Meier survival analysis based on different treatment options. Results: Nomograms of OS and CSS were formulated based on the independent prognostic factors utilizing the training set. The 3- and 5- years of OS nomogram demonstrated good discrimination (AUC = 0.840 and 0.829, respectively), well-calibrated power, and excellent clinical effectiveness. Our nomograms of predicting OS and CSS had a concordance index of 0.801 and 0.866 compared with 0.676 and 0.746 for the AJCC staging system, and more importantly, demonstrated a better forecast accuracy. Chemoradiotherapy displayed a significant survival benefit in the high-risk groups, but proceeding to surgery plus chemotherapy showed a favorable survival for the low groups based on all patients. Conclusion: We developed and internally validated multivariable models that predict OS and CSS risk of SPEC in patients with a CRC to help clinicians make applicable clinical decisions for patients. Keywords: endometrial neoplasms, colorectal carcinoma, nomogram, overall survival, cancer-specific survival
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junzilan发布了新的文献求助10
刚刚
刚刚
细品岁月完成签到 ,获得积分10
刚刚
细心书蕾完成签到 ,获得积分10
1秒前
无花果应助l11x29采纳,获得10
3秒前
3秒前
老詹头发布了新的文献求助10
3秒前
思源应助叫滚滚采纳,获得10
4秒前
5秒前
刘歌完成签到 ,获得积分10
5秒前
阿巡完成签到,获得积分10
5秒前
Chen完成签到,获得积分10
7秒前
LSH970829发布了新的文献求助10
7秒前
哈哈哈完成签到 ,获得积分10
8秒前
汤姆完成签到,获得积分10
8秒前
10秒前
10秒前
翠翠完成签到,获得积分10
11秒前
11秒前
LSH970829完成签到,获得积分10
12秒前
Lyg完成签到,获得积分20
13秒前
坚强的樱发布了新的文献求助10
13秒前
baodingning完成签到,获得积分10
14秒前
14秒前
公茂源发布了新的文献求助30
14秒前
热爱完成签到,获得积分10
15秒前
16秒前
叫滚滚发布了新的文献求助10
17秒前
星瑆心完成签到,获得积分10
17秒前
啦啦啦啦啦完成签到,获得积分10
18秒前
Lyg发布了新的文献求助10
18秒前
Dksido完成签到,获得积分10
19秒前
兰博基尼奥完成签到,获得积分10
19秒前
热情芷荷发布了新的文献求助10
21秒前
random完成签到,获得积分10
22秒前
22秒前
果果瑞宁完成签到,获得积分10
22秒前
23秒前
机智小虾米完成签到,获得积分20
23秒前
goldenfleece完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808