To address the ongoing demand for high-performance energy storage devices, it is crucial to identify new electrode materials. Lithium-ion batteries (LIBs) store energy via the electrochemical redox process, so their electrode materials should have reversible redox properties for rechargeability. On that note, redox-active metal complexes are explored as innovative electrode materials for LIBs. Redox-active metal(II) chloride complexes (MCC) demonstrate promising potential as anode materials, exhibiting high capacity and excellent rate capability. In particular, zinc(II) chloride complexes, referred to as ZCC, achieve a capacity of 1720 mAh g