Ni2+-Rich Collagen/Lignin Composite Hydrogel: Transforming Industrial Waste Materials into Flexible Electronics

木质素 复合数 材料科学 数码产品 复合材料 高分子科学 化学工程 高分子化学 化学 有机化学 工程类 物理化学
作者
Ilnaz Fargul Chowdhury,Md. Tanzil Ahamed Shawon,Md. Ashraful Alam,Sabiha Fatima,Azmat Ali Khan,Jinbei Yang,Zuwu Tang,Ajoy Kanti Mondal
出处
期刊:ACS applied polymer materials [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsapm.4c02615
摘要

Polymer-based conducting hydrogels have drawn significant interest for supercapacitors because of their fascinating features, including excellent conductivity, tunable mechanical properties, porous structure, outstanding flexibility, scalable processability, environmental friendliness, and low production cost. Herein, a dynamic redox process was designed utilizing collagen (CG), poly(acrylic acid) (PAA), lignosulfonate (LS), and Ni2+ to synthesize CG/PAA/LS/Ni hydrogel. The hydrogel's unique features, including high ionic conductivity (IC) (4.89 S/m), outstanding flexibility, and stretchability, were assigned to the effective complex formation of Ni2+ with the numerous functional groups of CG, LS, and PAA. With a maximum tensile strength of approximately 0.61 MPa at an elongation of 1595% and a maximum compressive strength of ∼208 kPa with the highest stretchability of 65%, the CG/PAA/LS/Ni hydrogel demonstrated exceptional mechanical properties. The prepared hydrogel can also monitor human motion with high sensitivity. The supercapacitor, assembled from the CG/PAA/LS/Ni hydrogel, manifested specific capacitance (Cs), highest energy density (Ed), and power density (Pd) of 245.6 F/g, 27.63 Wh/kg, and 2.7 kW/kg, respectively. Even after 5000 consecutive cycles of charging and discharging, the supercapacitor can retain its capacitance of 95.4%. This study opens up possibilities for the effective use of industrial waste in flexible electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gww发布了新的文献求助10
1秒前
Ava应助诚心逊采纳,获得10
1秒前
blueblue完成签到,获得积分10
2秒前
3秒前
香芋完成签到,获得积分0
4秒前
幼儿园小霸王完成签到,获得积分10
4秒前
在水一方应助无情的猎豹采纳,获得10
5秒前
所所应助氤氲采纳,获得10
5秒前
5秒前
安详的听云完成签到,获得积分10
7秒前
8秒前
NexusExplorer应助明理的亦寒采纳,获得10
8秒前
心想事陈应助明天采纳,获得10
9秒前
10秒前
Lucas应助chenjun7080采纳,获得10
10秒前
科研通AI5应助zhunzhunzhun采纳,获得10
12秒前
wanci应助烂漫亦云采纳,获得10
14秒前
ren完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
TALE完成签到,获得积分10
17秒前
赘婿应助缓慢的凝云采纳,获得10
17秒前
英俊的铭应助眼睛大秋双采纳,获得10
18秒前
王宇杰发布了新的文献求助10
20秒前
21秒前
Lucas应助ren采纳,获得10
21秒前
矮小的惜天完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
稳重豪完成签到,获得积分10
24秒前
chenjun7080发布了新的文献求助10
24秒前
小洛发布了新的文献求助30
24秒前
小马甲应助现代的绿真采纳,获得10
24秒前
FashionBoy应助愉快草莓采纳,获得10
25秒前
zsssss应助xxxrass采纳,获得10
25秒前
25秒前
26秒前
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483773
求助须知:如何正确求助?哪些是违规求助? 3073002
关于积分的说明 9128881
捐赠科研通 2764596
什么是DOI,文献DOI怎么找? 1517290
邀请新用户注册赠送积分活动 701998
科研通“疑难数据库(出版商)”最低求助积分说明 700849