Cooling efficacy of trees across cities is determined by background climate, urban morphology, and tree trait

特质 形态学(生物学) 树(集合论) 城市形态 地理 树木年代学 生态学 生物 数学 城市规划 计算机科学 动物 组合数学 考古 程序设计语言
作者
Haiwei Li,Yongling Zhao,Chenghao Wang,Diána Ürge-Vorsatz,Jan Carmeliet,Ronita Bardhan
标识
DOI:10.5194/egusphere-2024-234-v2
摘要

Abstract. Rapid increases in heat exposure in urban areas, fueled by both climate change and urban heat islands (UHI), are manifesting as a pressing concern. Planting and conserving urban trees is one of the pivotal strategies in mitigating outdoor heat and optimizing thermal comfort. We present an integrated review and meta-analysis of 131 studies conducted in the past 13 years, investigating the cooling effects of trees across 15 climate types in 85 global cities or regions. The cooling efficacy of trees is mainly determined by interconnecting urban morphology, tree traits, and, critically, the prevailing background climates. Our meta-analysis reveals that the cooling effects of urban trees observed in hot climates are significant due to low latitudes, along with their substantial solar radiation blockage and pronounced transpirational cooling. Moreover, an optimal level of transpirational cooling can be achieved at relatively lower humidity levels. However, in tropical and arid climates, extreme conditions involving high temperatures and vapor pressure deficits may trigger stomata closure in leaves, thereby impeding transpirational cooling. Our review further underscores the guiding principles of optimizing urban morphology by arranging buildings and trees, as well as selecting suitable tree species according to their traits to enhance the cooling effects of trees in different climates. The cooling effects of trees demonstrate a nonlinear increase in correlation with higher leaf area index (LAI), leaf area density (LAD), tree canopy coverage, and, inversely, a lower sky view factor (SVF). This systematic review and meta-analysis serve as a critical resource for researchers, urban planners, and policymakers striving to mitigate urban heat by strategically using urban trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风似潇应助科研通管家采纳,获得30
刚刚
上官若男应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
Liuzihao应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
2秒前
隐形曼青应助科研通管家采纳,获得30
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
3秒前
NexusExplorer应助科研通管家采纳,获得20
3秒前
南风似潇应助科研通管家采纳,获得30
3秒前
思源应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
大知闲闲发布了新的文献求助30
4秒前
wenlin完成签到,获得积分10
4秒前
小蘑菇应助陈龙采纳,获得200
5秒前
邓炎林发布了新的文献求助20
6秒前
7秒前
小二郎应助路人丨安采纳,获得10
8秒前
guangshuang发布了新的文献求助10
8秒前
qxx完成签到,获得积分10
8秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
9秒前
云竹丶完成签到,获得积分10
11秒前
乐观的小鸡完成签到,获得积分10
12秒前
刺客发布了新的文献求助10
13秒前
15秒前
15秒前
zxm完成签到,获得积分10
16秒前
调皮汽车完成签到 ,获得积分10
18秒前
ceeray23应助沫荔采纳,获得10
19秒前
Jack完成签到,获得积分10
19秒前
19秒前
荣耀发布了新的文献求助10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740036
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033401
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750356