数学
猜想
章节(排版)
Galois模块
有限域
代数数域
纯数学
图像(数学)
集合(抽象数据类型)
计算
领域(数学)
属
投射试验
离散数学
算法
植物
人工智能
广告
计算机科学
业务
生物
程序设计语言
作者
L. Alexander Betts,Jakob Stix
标识
DOI:10.4007/annals.2025.201.1.2
摘要
Let $K$ be a number field not containing a CM subfield. For any smooth projective curve $Y/K$ of genus $\ge 2$, we prove that the image of the "Selmer" part of Grothendieck's section set inside the $K_v$-rational points $Y(K_v)$ is finite for every finite place $v$. This gives an unconditional verification of a prediction of Grothendieck's section conjecture. In the process of proving our main result, we also refine and extend the method of Lawrence and Venkatesh, with potential consequences for explicit computations.
科研通智能强力驱动
Strongly Powered by AbleSci AI