The synthesis of 3-methoxypropiophenone 1, a crucial intermediate in the production of the analgesic tapentadol hydrochloride, was investigated using a multistep continuous flow process. The approach is based on the Grignard reaction. A series of continuously stirred tank reactors (CSTRs) were employed: the first reactors facilitated the continuous generation of Grignard reagents 3, which then reacted with propionitrile in the next CSTR to yield 1. This was followed by quenching, neutralization, and phase separation, conducted under varying temperatures and residence times. When compared to a 50% yield from an optimized batch synthesis protocol, a continuous flow synthesis helped achieve an 84% yield of the desired product in a much shorter reaction time. A kinetic model was developed to predict the Grignard reagent formation and product yield, revealing that the mass transfer effect is insignificant at a higher stirring rate. The approach is highly scalable for the synthesis of pharmaceutical intermediates.