地质力学
蠕动
本构方程
地质学
岩土工程
岩石力学
材料科学
结构工程
有限元法
工程类
复合材料
作者
Abolfazl Tarifard,Ákos Török,Péter Görög
标识
DOI:10.1007/s00603-024-03939-x
摘要
Abstract The creep behavior of rocks has been broadly researched because of its extensive application in geomechanics. Since the time-dependent stability of underground constructions is a critical aspect of geotechnical engineering, a comprehensive understanding of the creep behavior of rocks plays a pivotal role in ensuring the safety of such structures. Various factors, including stress level, temperature, rock damage, water content, rock anisotropy, etc., can influence rocks’ creep characteristics. One of the main topics in the creep analysis of rocks is the constitutive models, which can be categorized into empirical, component, and mechanism-based models. In this research, the previously proposed creep models were reviewed, and their main characteristics were discussed. The effectiveness of the models in simulating the accelerated phase of rock creep was evaluated by comparing their performance with the creep test results of different types of rocks. The application of rock’s creep analysis in different engineering projects and adopting appropriate creep properties for rock mass were also examined. The primary limitation associated with empirical and classical component models lies in their challenges when it comes to modeling the tertiary phase of rock creep. The mechanism-based models have demonstrated success in effectively simulating the complete creep phases; nevertheless, additional validation is crucial to establish their broader applicability. However, further investigation is still required to develop creep models specific to rock mass. In this paper, we attempted to review and discuss the most recent studies in creep analysis of rocks that can be used by researchers conducting creep analysis in geomechanics.
科研通智能强力驱动
Strongly Powered by AbleSci AI