Human pose estimation and gait analysis with convolutional neural networks for Alzheimer’s disease detection

卷积神经网络 计算机科学 步态 人工智能 姿势 步态分析 模式识别(心理学) 计算机视觉 物理医学与康复 医学
作者
Mahmoud Seifallahi,Brennen Farrell,James E. Galvin,Behnaz Ghoraani
标识
DOI:10.1117/12.3013776
摘要

In computer vision, human pose estimation (HPE) through convolutional neural networks (CNNs) has emerged as a promising avenue with broad applicability. This study bridges a novel application of HPE, targeting the early detection of Alzheimer's disease (AD), a condition expected to affect roughly 13.4 million Americans by 2026. Traditionally, AD diagnostic methodologies like brain imaging, Electroencephalography, and blood/neuropsychological tests are not only expensive and protracted but also require specialized medical expertise. Addressing these constraints, we introduce a cost-efficient and universally accessible system to detect AD, harnessing conventional cameras and employing pose estimation, signal processing, and machine learning. Data was sourced from videos capturing a 10-meter curve walk of 73 cognitively healthy older adults (HC) and 34 AD patients. The recording apparatus was a camera offering a resolution of 1920x1080 pixels at 30 frames/second, stationed laterally to the walking path. Using OpenPose, a state-of-the-art, bottom-up multi-person HPE method based on CNNs, we derived 25 distinctive body joint coordinates from the footage. Subsequently, 48 gait parameters were extracted from these joints and subjected to statistical scrutiny. A noticeable difference was observed in 39 out of the 48 gait parameters between the HC and AD groups. Leveraging a Support Vector Machine (SVM) to classify the data, the distinctiveness of these gait markers was further affirmed. The system accomplished a commendable accuracy rate of 90.01% and an F-score of 86.20% for AD identification. In essence, our findings advocate that the amalgamation of everyday cameras, sophisticated HPE techniques, signal processing, and machine learning can pave the way for practical AD detection in non-specialized settings, including home environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈发布了新的文献求助10
1秒前
JamesPei应助wangklvin采纳,获得10
1秒前
2秒前
DTT完成签到,获得积分10
3秒前
NexusExplorer应助奋斗的桐采纳,获得10
3秒前
3秒前
3秒前
快乐小恬完成签到 ,获得积分10
3秒前
3秒前
4秒前
SciGPT应助光亮的思柔采纳,获得10
5秒前
norman完成签到,获得积分20
5秒前
5秒前
万能图书馆应助包容浩宇采纳,获得10
5秒前
小台发布了新的文献求助10
6秒前
隐形曼青应助nininininini采纳,获得10
6秒前
完美世界应助有魅力灵珊采纳,获得10
7秒前
7秒前
yc096vps发布了新的文献求助10
8秒前
8秒前
8秒前
彭于晏应助norman采纳,获得10
8秒前
小巧采白完成签到,获得积分10
8秒前
9秒前
Ava应助潞垚采纳,获得10
9秒前
yumemakase完成签到,获得积分10
9秒前
13123发布了新的文献求助10
9秒前
科目三应助哈哈哈采纳,获得10
9秒前
9秒前
小王发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
Lufthansa发布了新的文献求助10
11秒前
凶狠的文龙完成签到,获得积分10
11秒前
shy完成签到,获得积分10
11秒前
11秒前
SongwCcccc完成签到,获得积分10
12秒前
三徙教完成签到,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3657844
求助须知:如何正确求助?哪些是违规求助? 3219862
关于积分的说明 9733864
捐赠科研通 2928835
什么是DOI,文献DOI怎么找? 1603686
邀请新用户注册赠送积分活动 756719
科研通“疑难数据库(出版商)”最低求助积分说明 734079