Human Behaviour and Abnormality Detection using YOLO and Conv2D Net

异常 计算机科学 心理学 社会心理学
作者
S Sophia,Joeffred Gladson J
标识
DOI:10.1109/icict60155.2024.10544757
摘要

In many fields, such as security, medical, and surveillance, human behavior and anomaly detection is essential. This abstract describes a novel method for reliably detecting and classifying anomalous human behavior that combines two deep learning algorithms: CONV2d net and YOLO (You Only Look Once). Modern object detection algorithms like YOLO are renowned for their great accuracy and real-time performance. A popular convolutional neural network architecture for image recognition applications is the CONV2d net. The major goal is to improve anomaly detection and human behavior accuracy and efficiency by combining these two methods.The suggested approach locates and effectively detects humans in real-time video feeds by using YOLO. Then, human behavior is classified using the CONV2d net into specified categories including standing, walking, running, and abnormal actions. The integration of these two methods enables reliable and precise identification of human behavior across a range of contexts. In addition, the system makes use of an extensive collection of annotated movies, which allows the deep learning models to be trained and validated. Through a series of comprehensive experiments, YOLO and CONV2d net fusion model performances in identifying and classifying human behavior is presented, including anomalous behaviors that might point to possible threats or dangerous situations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的枫叶完成签到 ,获得积分10
刚刚
星辰大海应助mengna采纳,获得10
刚刚
刚刚
刚刚
大花卷完成签到,获得积分10
刚刚
布丁仔完成签到,获得积分10
1秒前
fanfan完成签到,获得积分10
1秒前
1秒前
怀先生完成签到,获得积分10
1秒前
shiyin完成签到 ,获得积分10
2秒前
zzz发布了新的文献求助10
2秒前
乐哉发布了新的文献求助10
2秒前
含蓄含烟完成签到,获得积分10
2秒前
3秒前
瘦瘦的草丛完成签到,获得积分10
3秒前
谨慎的白秋完成签到,获得积分10
3秒前
橘子林完成签到,获得积分10
3秒前
Donaldwang完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
liuaoo完成签到,获得积分20
3秒前
李健的小迷弟应助kongbaige采纳,获得10
4秒前
邹万恶发布了新的文献求助10
4秒前
搞怪冷之完成签到 ,获得积分10
4秒前
swify339完成签到,获得积分10
5秒前
typhoon完成签到,获得积分10
5秒前
sugar完成签到,获得积分10
5秒前
lily完成签到,获得积分10
5秒前
自由寄柔完成签到,获得积分10
5秒前
6秒前
Zx_1993应助miao采纳,获得20
6秒前
欧阳蛋蛋鸡完成签到,获得积分10
6秒前
ZJPPPP发布了新的文献求助10
6秒前
cij123完成签到,获得积分10
6秒前
独特的忆彤完成签到 ,获得积分10
7秒前
mc关闭了mc文献求助
7秒前
leisure应助科研通管家采纳,获得10
7秒前
VDC应助科研通管家采纳,获得30
7秒前
liuaoo发布了新的文献求助10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006