A RAG-based Medical Assistant Especially for Infectious Diseases

计算机科学
作者
S. Kirubakaran,Jasper Wilsie Kathrine G,E. Grace Mary Kanaga,Mahimai Raja J,Ruban Gino Singh A,E Yuvaraajan.
标识
DOI:10.1109/icict60155.2024.10544639
摘要

Infectious diseases like COVID-19 have gained international attention recently. Furthermore, there are significantly fewer doctors per capita in densely populated nations like India, which hurts those in need. Under such circumstances, natural language processing techniques might make it feasible to create an intelligent and engaging chatbot system. The primary objective of the effort is to develop an interactive solution that is entirely open source and can be easily installed on a local computer using the most recent data. Even though there are numerous chatbots on the market, proposed solutions highlight the need to provide individualized and sympathetic responses. Getting Back While the data is stored in the graph database as nodes and relationships, and the knowledge graph is constructed on top of it, augmented generation is utilized to extract the pertinent content from the data. To improve the generator's context, pertinent sections are collected during the question-answering process. This reduces hallucinations and increases the correctness of abstractions by providing external knowledge streams. Furthermore, the research study employs a text-to-speech model that was replicated from a physician's voice recording to narrate the produced responses, thereby augmenting user confidence and interaction. Academic institutions and healthcare organizations can benefit from this work by better understanding the value and effectiveness of applying NLP techniques to infectious disease research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老K完成签到 ,获得积分10
刚刚
zzz发布了新的文献求助10
刚刚
wlmqljj完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
2秒前
小只完成签到,获得积分10
2秒前
跳跳发布了新的文献求助10
4秒前
不吃菠萝蜜完成签到 ,获得积分10
4秒前
4秒前
255发布了新的文献求助30
5秒前
LiLiuli应助Paralyzed采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
英吉利25发布了新的文献求助30
6秒前
6秒前
fu完成签到,获得积分20
6秒前
6秒前
楠楠DAYTOY完成签到,获得积分10
7秒前
张巨锋发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
潇洒荧荧发布了新的文献求助10
7秒前
李李李发布了新的文献求助10
7秒前
spc68应助HTY采纳,获得10
8秒前
8秒前
8秒前
WJ98发布了新的文献求助10
8秒前
321发布了新的文献求助50
8秒前
momo发布了新的文献求助10
9秒前
小马甲应助邵初蓝采纳,获得10
9秒前
caicai完成签到,获得积分10
9秒前
10秒前
syvshc应助人类不宜搞科研采纳,获得10
10秒前
10秒前
shirley完成签到,获得积分10
11秒前
YY再摆烂发布了新的文献求助10
11秒前
Hello应助自信彩虹采纳,获得10
11秒前
Zwj完成签到 ,获得积分10
12秒前
stresm完成签到,获得积分10
13秒前
李爱国应助倚楼听风雨采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277