A RAG-based Medical Assistant Especially for Infectious Diseases

计算机科学
作者
S. Kirubakaran,Jasper Wilsie Kathrine G,E. Grace Mary Kanaga,Mahimai Raja J,Ruban Gino Singh A,E Yuvaraajan.
标识
DOI:10.1109/icict60155.2024.10544639
摘要

Infectious diseases like COVID-19 have gained international attention recently. Furthermore, there are significantly fewer doctors per capita in densely populated nations like India, which hurts those in need. Under such circumstances, natural language processing techniques might make it feasible to create an intelligent and engaging chatbot system. The primary objective of the effort is to develop an interactive solution that is entirely open source and can be easily installed on a local computer using the most recent data. Even though there are numerous chatbots on the market, proposed solutions highlight the need to provide individualized and sympathetic responses. Getting Back While the data is stored in the graph database as nodes and relationships, and the knowledge graph is constructed on top of it, augmented generation is utilized to extract the pertinent content from the data. To improve the generator's context, pertinent sections are collected during the question-answering process. This reduces hallucinations and increases the correctness of abstractions by providing external knowledge streams. Furthermore, the research study employs a text-to-speech model that was replicated from a physician's voice recording to narrate the produced responses, thereby augmenting user confidence and interaction. Academic institutions and healthcare organizations can benefit from this work by better understanding the value and effectiveness of applying NLP techniques to infectious disease research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏猛完成签到,获得积分10
刚刚
1秒前
桐桐应助wei采纳,获得10
1秒前
仁爱嫣发布了新的文献求助20
1秒前
力劈华山完成签到,获得积分10
2秒前
JamesPei应助平淡大船采纳,获得10
3秒前
3秒前
3秒前
li给li的求助进行了留言
4秒前
靓丽衫完成签到 ,获得积分10
4秒前
hhh完成签到,获得积分20
5秒前
科研小白完成签到 ,获得积分10
5秒前
ai幸完成签到,获得积分10
5秒前
科研通AI6.1应助积极纲采纳,获得10
5秒前
CodeCraft应助E10100采纳,获得10
5秒前
爆米花应助Long采纳,获得10
6秒前
132完成签到,获得积分10
6秒前
7秒前
shanshanerchuan完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
Danmo完成签到,获得积分10
9秒前
快乐滑板应助miemie66采纳,获得10
9秒前
斯文败类应助Aurinse采纳,获得10
9秒前
今后应助nini采纳,获得10
10秒前
10秒前
uu完成签到,获得积分20
10秒前
gugugu发布了新的文献求助10
11秒前
11秒前
11秒前
均衡完成签到,获得积分10
11秒前
小刘同学发布了新的文献求助10
12秒前
spinon发布了新的文献求助10
13秒前
wei发布了新的文献求助10
14秒前
shiyi完成签到,获得积分10
15秒前
dua完成签到,获得积分10
17秒前
19秒前
132发布了新的文献求助20
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761101
求助须知:如何正确求助?哪些是违规求助? 5527734
关于积分的说明 15398943
捐赠科研通 4897671
什么是DOI,文献DOI怎么找? 2634354
邀请新用户注册赠送积分活动 1582460
关于科研通互助平台的介绍 1537768